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Abstract

This paper presents improved algorithms for the following problem : Given an un-
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1 Introduction

The following two problems are among the most fundamental algorithmic
graph problems :

e Transitive Closure : Process a given directed graph® G(V, E) so that
any query of the form, “Is there a path from u to v in the graph?’, can be
answered efficiently.

e All-Pairs Shortest Paths Problem : Process a given unweighted graph
G(V, E) so that any query of the form, “Report the shortest path (or dis-
tance) from vertex u to a verter v?’, can be answered efficiently.

There exist classical algorithms that take O(mn) time for the two problems
so that any query can be answered in O(1) time. There also exist algorithms
based on fast matrix multiplication that require sub-cubic time for the two
problems. In particular, using the fastest known matrix multiplication algo-
rithms (Coppersmith and Winograd [4]), the best bound on computing tran-
sitive closure is O(n?37%), whereas for the all-pairs shortest paths problem, it
is O(n?>7) [20].

There are many applications in communication networks, incremental parser
generation [14] and relational databases augmented with transitive closure
[15,11] that require efficient solutions of the above problems for a dynamic
graph. In a dynamic graph problem, an initial graph is given, followed by an
sequence of on-line queries interspersed with updates which can be insertion
or deletion of edges. We have to carry out the updates and answer the queries
on-line in an efficient manner. Each query has to be answered with respect
to the present state of the graph, i.e., incorporating all the updates preceding
the query. One trivial way to solve such a dynamic graph problem is that
we run the static graph algorithm after every update. The goal of a dynamic
graph algorithm is to update the solution efficiently after the dynamic changes,
rather than having to re-compute it from scratch each time.

For every static graph problem, there exists its dynamic counterpart. We can
classify dynamic graph problems according to the types of updates allowed.
A problem is said to be fully dynamic if the update operations include both
insertions and deletions of edges. A problem is called partially dynamic if only
one type of update, either insertion or deletions, is allowed. If only insertions
are allowed, the problem is called incremental; if only deletions are allowed, it
is called decremental.

We present efficient decremental algorithms for maintaining all-pairs shortest-
paths and transitive closure in an unweighted graph. The query algorithms
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are Monte-Carlo with one sided error (the probability of error being inverse
polynomial).

1.1 Previous work and our contribution

Transitive Closure :

La Poutre and Van Leeuwen [18] gave a decremental algorithm for maintain-
ing transitive closure with O(m) amortized update time per edge deletion
and answering each query in O(1) time. Demetrescu and Italiano [6] gave a
decremental algorithm for the problem that requires O(n®/m) amortized up-
date time which is better for dense graphs. For an initial complete graph,
the algorithm achieves O(n) amortized update time per edge deletion [5], but
for sparse graphs, the update time can be even 6(n?). It can be seen that a
combination of these two algorithms yields an upper bound of O(n%) on the
update time while keeping O(1) query time. Henzinger and King [13] gave a
decremental randomized algorithm that achieves O(n In®n) amortized update
time but at the expense of increased query time of O(;~). The query has one
sided inverse polynomial error, i.e., the answer to any query may be incorrect
in the sense that it may not report a path when there exists one. However,
the probability of an error can be made smaller than ni for arbitrary ¢ > 0.
Subsequently we will use the acronym w.h.p. to denote probability exceeding
1 — = for any ¢ > 0.

In this paper, we present an efficient algorithm that achieves O(1) query time
w.h.p. and requires O(nann + ;—%lnn) amortized update time per edge-
deletion. Our algorithm achieves an improvement in the update time com-
pared to the deterministic algorithms while ensuring O(1) query time. By
suitably combining with [18], our algorithm achieves an improved upper bound
of O(n3¥/Inn) on amortized update time per edge deletion for the problem of
maintaining transitive closure with optimal query time.

All-pairs shortest paths :

Demetrescu and Italiano [7] gave a decremental algorithm for maintaining all-
pairs shortest paths under deletion of edges that achieves O(%3 In*n) amor-
tized update time while achieving optimal query time w.h.p. Their algorithm
improves the previous O(n?) update time of [16] for dense graphs.

We present two decremental algorithms for the all-pairs shortest paths prob-
lem. For distance reporting problem, we give a simpler combinatorial algo-
rithm that requires O(%3 In®n) amortized update time while achieving O(1)
query time. For the shortest path reporting problem (i.e. the actual sequence
of edges), we use the idea of filtering search in a novel way to design an al-
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Table 1
All the update bounds (old and new) are amortized. Throughout this paper, our
query times are optimal but there is one sided inverse polynomial error in the query-
answer.

gorithm that achieves O(min(n2v/Inn, %3 In*n)) update time while achieving
optimal query time. Hence we reduce the upper bound on the worst case
amortized update time for the problem of maintaining all-pairs shortest paths

under deletion of edges by a factor of O(,/{%).

Next, we present an efficient decremental algorithm that offers a trade-off be-
tween update time and approximation factor of the shortest path. For main-
taining all-pairs (1 + €)-approximate shortest paths, our algorithm achieves

O("lf# + "i—\;%") amortized update time per edge-deletion for arbitrarily small
e > 0. We summarize our results in Table 1.

It may be noted that our algorithms are simple to implement and do not make
use of any sophisticated matrix multiplication algorithms. We show that the

space requirement of our data structures is O(n?).



2 Overview of our algorithms

2.1 Notations

Given an unweighted graph G(V, E), v € V, and a positive integer d, we define
the following notations that will be used in the remaining paper.

e out_tree(v) : a complete breadth-first-search (BFS) tree rooted at the vertex
v in the graph G(V, E).

e in_tree(v) : a complete BES tree rooted at the vertex v in the graph formed
by reversing all the edge-directions in G(V, E).

e out_tree(v,d) : a BFS tree of depth d rooted at the vertex v in the graph
GV, E).

e in_tree(v,d) : a BFS tree of depth d rooted at the vertex v in the graph
formed by reversing all the edge-directions in G(V, E).

o (in_tree,out_tree)(v,d) : a pair of in_tree(v,d) and out_tree(v, d).

e W(S,d) : {(in_tree,out_tree)(v,d) |v € S }, for a given S C V.

e S, : A random set of vertices formed by picking each vertex randomly in-

dependently with probability an The expected size of the set S, is 2nn

With a BFS tree, we also keep an auxiliary array to determine in constant

time whether a vertex belongs to the tree or not. In addition, for each vertex

that belongs to the tree we keep information about its level (its distance from

the root) and its parent in the tree. With all this information that we main-

tain in a BF'S tree, it can be seen that in addition to maintaining reachability

information from v, the tree out_tree(v, d) can also serve the purpose of main-

taining the distance/shortest-path information to all the vertices lying within

distance d from v. In the same way, in_tree(v, d) can be used for maintaining

reachability information as well as the shortest path to v from all the vertices

for whom v lies within distance d.

While edges are being deleted in a graph, the levels of vertices in a BFS tree
may increase. Thus maintaining a BFS tree of depth d, after an edge deletion,
involves finding the set of vertices whose level has increased, eliminating those
from this set whose level has fallen beyond d, and assigning the rest of the
vertices (with level < d still) to their new levels.

The best known algorithm for maintaining an in_tree or an out_tree is given
by Henzinger and King [13] along the lines of [10].

Lemma 1 [13] Given an unweighted graph G(V,E), a vertex v € V and a
positive integer d, an in_tree(v,d) (or an out_tree(v,d)) can be maintained in
O(d) amortized update time per edge deletion.



2.2 Main Idea

The simplest way of maintaining all-pairs reachability (shortest paths) in an
unweighted graph is to maintain an out_tree up to depth n from each vertex.
It follows from Lemma 1 that the amortized update time required by this
approach (maintaining n out_trees of depth n) will be O(n?) per edge deletion.

In order to develop efficient decremental algorithm for transitive closure and
all-pairs shortest paths, we explore alternate schemes of maintaining all-pairs
reachability and shortest paths. In this endeavor, we present schemes that
maintains reachability and exact (or approximate) shortest path information
implicitly.

Consider a pair of vertices u, w € V such that there is a path from vertex u to
w, and let v be any intermediate vertex on the path. It can be seen that the ver-
tex u belongs to in_tree rooted at v, and the vertex w belongs to out_tree rooted
at v. Thus combined together in_tree, out_tree rooted at v stores the path from
u to w implicitly (the complete path and its length can be retrieved by query-
ing in_tree(v) and out_tree(v)). In other words, the pair (in_tree(v),out_tree(v))
acts as a witness of reachability from u to w. Analogously if the vertex v lies
on the shortest path from u to w, the pair (in_tree(v),out_tree(v)) pair acts as
a witness of shortest path from u to w.

The above mentioned scheme of keeping reachability (shortest path) informa-
tion implicitly suggests that in order to maintain all-pairs reachability (short-
est paths) under deletion of edges, it suffices to maintain a witness (if one
exists) of reachability (shortest path) for each vertex-pair (u,w). In the fol-
lowing section, we design efficient algorithms for maintaining witnesses of all-
pairs reachability and shortest paths corresponding to paths of length in an
interval [d',d] for any 1 < d' < d < n. These algorithms form the basis for
developing efficient decremental algorithms for the main problems as follows.

Maintaining transitive closure : The scheme of maintaining reachability
implicitly (by keeping witnesses) proves to be efficient for maintaining all-
pairs reachability corresponding to long paths. On the other hand, the scheme
of maintaining reachability explicitly (by keeping out_tree from every vertex)
proves to be efficient for maintaining reachability corresponding to short paths.
We combine the two strategies together to achieve improved update time of
O(nln’n + j—%m) per edge deletion.

Maintaining all-pairs approximate shortest paths : Analogous to wit-
ness of reachability and shortest paths, we propose the terminology of wit-
ness of approximate shortest paths. It turns out that our data structure for
maintaining transitive closure can be suitably adapted to maintain all-pairs



+ ¢)-approximate shortest paths”® 1n unweighted graphs.
1 imate shortest paths? i ighted graph

Maintaining all-pairs exact shortest paths : For the problem of main-
taining all-pairs shortest distances, the strategy of maintaining witness of
shortest path for every vertex-pair leads to achieving O(%2 In? n) update time.
For the case when query is to report the shortest path, we use the idea of filter-
ing search [2] to reduce the update time further to O(min(n2v/Inn, 77;—3 In?n))

which is bounded by O(n2v/Inn) for all graphs.

3 Maintaining witnesses of reachability /shortest-paths for all-pairs
of vertices separated by distance € [d’,d]

In this section we design efficient algorithms for maintaining reachability and
shortest paths for all the vertex-pairs (u,w) such that there is a path from
u to w of length € [d',d]. For the reachability problem, the algorithm will
maintain a witness of reachability for every vertex-pair (u,w) if there is path
of length € [d',d] from u to w. For the all-pairs shortest path problem, the
algorithm will maintain a witness of the shortest path for every vertex-pair
(u, w) among all paths from u to w of length € [d', d].

Let S C V, and let W(S,d) be the set of pairs of in_tree and out_tree of
depth d rooted at each vertex of the set S (see the notations defined in section
2.1). We begin with the design of efficient algorithms for maintaining all-
pairs reachability and shortest paths with tree-pairs from the set W (S, d) as
witnesses, i.e., the paths to be considered for reachability (shortest-path) are
only those paths that are captured by the tree-pairs of the set W (S, d). The
algorithm can be used for maintaining reachability (shortest paths) for all-
pairs of vertices separated by distance € [d', d], if we choose S = V. It turns out
that the update time of the algorithm is directly proportional to the size of the
witness set. Subsequently, to improve the update time, we reduce the number
of witnesses, i.e. |S| by using random sampling. This observation was exploited
by Henzinger and King [13] for designing a decremental algorithm to maintain
all-pairs reachability with O(nIn”n) update time at the expense of O()
query time. We extend this approach to its full potential for maintaining all-
pairs shortest paths and transitive closure with optimal query time.

3.1 Maintaining all-pairs reachability with respect to a witness set

Let W (S, d)={(in_tree, out_tree)(v,d)|v € S} be the set of witnesses kept in a
list, also denoted by W (S,d). Let u, w be any two vertices in the graph. If u

4 Path with length at most (1 + €) times the length of the shortest path



and w lie respectively in in_tree(v, d) and out_tree(v, d) for some vertex v € S,
then (in_tree,out_tree)(v,d) is a witness of reachability from u to w. Finding
out if there is any witness in the set W (S, d) for reachability from u to w will
require querying each (in_tree,out_tree)(v,d) € W (S,d). Thus the query time
will be O(|S]). In order to achieve O(1) query time, we maintain a witness
matrix M. For each pair (u, w), at every stage M[u,w] points to some vertex
v € S if (in_tree,out_tree)(v, d) is a witness of reachability from u to w.

We initialize the matrix M as follows : The matrix M has all entries pointing to
null initially. For every (in_tree,out_tree)(v, d)e W (S, d), we do the following.
For each u € in_tree(v,d) and for every w € out_tree(v, d), we update M [u, w]
to point to v if it was pointing to null previously. Thus it requires O(n?) time
per tree-pair from the set W (S, d) to initialize the witness matrix M.

Lemma 2 Given a graph G(V, E), a set of tree pairs W (S, d) for a set S C'V
and a positive integer d, it takes O(n?S|) time to initialize matriz M for
storing witnesses of reachability for all-pairs of vertices with respect to the set

W (S, d).

Notice that as the edges are being deleted, a tree-pair (in_tree,out_tree) (v, d)€
W (S, d) may cease to be a witness of reachability for a vertex-pair (u, w). This
happens when either u ceases to belong to in_tree(v, d) or the vertex w ceases
to belong to out_tree(v,d). We now describe an algorithm for updating the
entries of matrix M after an edge deletion.

Updating matrix M for witnesses of reachability :
We perform the following three operations after deletion of an edge.

(1) Updating the BFS trees of the set W(S,d) :
For each v € S, we update in_tree(v,d) and out_tree(v,d) for the edge
deletion.

(2) Finding the pairs of vertices whose witness of reachability has expired :
Let (in_tree,out_tree)(v,d) be a tree-pair from the set W(S,d), and let
X and Y be the set of vertices that cease to belong to in_tree(v, d) and
out_tree(v, d) respectively. (These sets are already computed in step 1.)
We process the set X as follows (the set Y is processed in a similar
fashion). For every u € X, we find the set s, of vertices such that M [u, w]
is v for each w € s,. By inspecting the row M|u, _| it requires O(n) time
per u € X to find s,. [t can be seen that (in_tree,out_tree)(v,d)e W (S, d)
has ceased to be a witness of reachability from u to each w € s,.

By processing each tree-pair in the manner describer above, we can
compute all-pairs of vertices whose current witness of reachability in M
has expired.

(3) Searching for a new witness of reachability :
Let (u,w) be a pair of vertices whose current witness of reachability, say
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Fig. 1. The search for a new witness of reachability from u to w when
(in_tree,out_tree) (v, d) ceases to be the witness.

(in_tree,out_tree) (v, d) has expired due the recent edge-deletion. We search
the list W (.S, d) starting from the tree-pair following (in_tree,out_tree) (v, d),
and find a witness of reachability from u to w (spending O(1) time per
tree-pair in W (S, d)). If we reach the end of the list W (S, d), we update
M u,w] to point to null, otherwise we update Mu,w] to point to the
root of the new witness found.

The following invariant is maintained throughout the series of edge deletions.
I : M[u,w] points to the first tree-pair in the list W (S, d) that is a witness of
reachability from u to w.

The invariant holds just after the initialization of M. It can be easily verified
that the procedure described above preserves the invariant after each edge
deletion. By induction on the number of edge deletions, we can conclude that
the invariant I always holds.

Cost Analysis : As mentioned in Lemma 2, the total cost of initializing the
witness matrix M is O(n?|S]). We now assess the total cost incurred in the
three kinds of operations that we perform to maintain matrix M.

The first operation deals with updating each tree-pair under edge deletion.
[t requires O(d) amortized cost per edge deletion for maintaining the in_tree
and out_tree of depth d rooted at a vertex. Hence the total cost of maintaining
tree-pairs of set W (S, d) will be O(md|S|) over any sequence of edge deletions.

Now consider the second operation that computes the pairs of vertices
whose witness of reachability has expired after an edge deletion. It follows
from the description given above that for a tree-pair (in_tree,out_tree)(v, d)€
W (S,d), we incur O(n) cost per vertex when the vertex ceases to belong to
in_tree(v, d) (or out_tree(v, d)). Hence the total cost incurred in second opera-
tion is O(n?|S]|) over any sequence of edge deletions.

To assess the total cost incurred in the third operation, that is, searching
for a new witness of reachability, note that we consider a tree-pair from the



list W (S, d) exactly once for being a witness of reachability for a pair (u,w).
This is because once a tree-pair (in_tree,out_tree)(v, d) ceases to be a witness
of reachability from u to w, it can never become a witness of reachability from
u to w in future. Hence the total cost incurred in searching for new witnesses
will be O(n?|S|) over the entire sequence of edge-deletions.

Summing up the cost of all operations, we conclude that the total cost incurred
in maintaining all-pairs reachability over any sequence of edge deletions is

O(md|S| + n2|S)).

Theorem 3 Given a graph G(V, E), a set of tree-pairs W (S, d) for a set S C
V' and a positive integer d, all-pairs reachability with respect to the witnesses
W(S,d) can be maintained under edge-deletions with O(1) query time and
O((md + n?)|S|) total update time.

3.2 Maintaining all-pairs shortest paths with respect to a witness set

The algorithm we describe is analogous to the algorithm described in the
previous subsection. Let W (S, d)={(in_tree, out_tree)(v,d)|v € S} be the set
of witnesses kept in a list, also denoted by W (S, d). We maintain a witness
matrix M such that for each u,w € V, M[u, w] points to the first tree-pair
in the list W (S, d) which is a witness of the shortest path among all paths
from u to w captured by the tree-pairs from the set W (S, d). The matrix M is
initialized as follows. The matrix M has all entries pointing to null initially.
For every (in_tree,out_tree)(v,d)e W (S,d), we do the following. For each u €
in_tree(v, d) and for every w € out_tree(v, d), we update M|[u, w] to point to v if
it is pointing to null or if the tree-pair associated with the existing M[u, w] is
a witness of a path from u to w with longer length than the tree-pair (in_tree,
out_tree) (v, d). Tt follows easily that it requires O(n?) time per element of the
set W (S, d) to initialize the matrix.

Lemma 4 Given a graph G(V, E), a set of tree pairs W (S, d) for a set S C'V
and a positive integer d, it takes O(n?|S|) time to initialize matriz M for
storing witnesses of shortest paths for all-pairs of vertices with respect to the

set W(S,d).

For any pair of vertices u,w € V, let M[u,w|] = v after the initialization
of the matrix M. Notice that as the edges are being deleted, the tree-pair
(in_tree,out_tree)(v,d)e W (S,d) may cease to be a witness of the shortest
path for the vertex-pair (u,w). This happens when either u increases its level
in in_tree(v,d) or the vertex w increases its level in out_tree(v,d). We now
describe an algorithm for updating the entries of M after an edge deletion.
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Updating matrix M for witnesses of shortest paths : We perform the
following three operations after deletion of an edge.

(1)

(2)

Updating the BFS trees of the set W (S, d) :

For each v € S, we update in_tree(v,d) and out_tree(v,d) for the edge
deletion.

Finding the pairs of vertices whose witness of shortest path has to be
updated :

Let (in_tree,out_tree)(v, d) be a tree-pair from the set W (S, d), and let X
and Y be the sets of vertices whose level has increased in in_tree(v, d)
and out_tree(v, d) respectively. We process the set X as follows (the set
Y is processed in a similar fashion). We scan row M|[u, _| for each u € X
to compute all those vertices w € V such that M[u,w] = v. It can be
seen that the length of the shortest path from u to w passing through v
has increased. As a result, we can not be sure that (in_tree,out_tree) (v, d)
would still be a witness of shortest path from w to w. This is because there
might be some other tree-pair in the set W (S, d) that could be a witness
of a path from u to w with length less than that of the new path from
u to w passing through v. So we need to find a new witness of shortest
path from u to w.

By processing each tree-pair in the manner describer above, we can

compute all-pairs of vertices whose current witness of shortest path has
to be updated in M.
Searching for a new witness of shortest path : Let (u,w) be a pair of
vertices such that a new witness of shortest path from u to w has to be
searched for due to the recent edge-deletion (as mentioned in the second
operation mentioned above). Let (in_tree,out_tree)(v, d) be the witness of
shortest path (of length say r) from u to w prior to the edge deletion.
We scan the list W (S,d) starting from the successor of the tree-pair
(in_tree,out_tree)(v, d) in search for a witness of a path of length r from
u to w. If we find one, we stop; otherwise there is no path from u to w of
length < r in any tree-pair from the set W (S, d). In this case, we perform
another scan starting from the head of the list W (S,d) in search of a
witness of path-length r 4+ 1. We increment r until we find one witness or
r becomes 2d. In the latter case, we conclude that there is no path from
u to w captured in any tree-pair of the set W (S, d).

The following invariant is maintained throughout the series of edge deletions.
IAPSE - At every stage M|u, w] points to the first tree-pair in the list W (S, d)
that is a witness of the shortest path from u to w among all paths from u to
w captured by tree-pairs of the set W (S, d).

From the initialization of M, it follows that the invariant holds in the begin-
ning. A simple inductive proof on the number of edge deletions can be used

11
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to show that the invariant always holds.

Cost Analysis : As mentioned in Lemma 4, the total cost of initializing the
matrix M is O(n?|S|). Now we shall assess the total cost incurred in the three
kinds of operations that we perform to maintain the matrix M.

The total cost of the first operation over any sequence of edge deletions is
O(md|S]).

During the second operation, for every v € S, we compute the set of vertex-
pairs whose distance in (in_tree,out_tree)(v, d) has increased. Since we do not
process a vertex-pair (u,w) whenever either of them falls beyond distance d
from v, therefore, a vertex-pair will be reported in this set at most 2d times
by a tree-pair. It follows that a total of O(n?d) time will be spent per tree-
pair in computing such sets over the entire sequence of edge deletions. Since
there are |S| tree-pairs, the total cost incurred in the second operation will be
O(n?%d|S)).

To assess the total cost incurred in the third operation, the key observation
is that for a particular distance r < d and a vertex-pair (u, w), a tree-pair from
the set W (S, d) is considered at most once for being a witness of path-length
r (from u to w). This is because a tree-pair that ceases to be a witness of
path-length r from u to w can never become a witness of path-length r from u
to w in future. Thus for a pair of vertices, the total cost incurred in searching
the list W (S,d) will be O(d|S|) over any sequence of edge deletions. Since
there are O(n?) pairs of vertices, the total cost incurred in the third operation
will be O(n?d|S]).

Summing up the cost of all operations, we can conclude that the total cost
incurred in maintaining all-pairs shortest paths with respect to the witness

set W(S,d) is O(n?|S| + md|S| + n?d|S|), i.e., O(n*d|S|).

Theorem 5 Given a graph G(V,E), a set of tree-pairs W(S,d) for a set
S C V and a positive integer d, all-pairs shortest paths with respect to the
witnesses W (S, d) can be maintained under edge-deletions with optimal query
time and O(n%d|S|) total update time.

3.8  Maintaining reachability and shortest paths corresponding to all-paths of
length € [d', d]

It follows from Theorem 3 (and 5) that by choosing witness set W (V,d), we
can maintain all-pairs reachability (shortest paths) corresponding to paths of
length < d. Notice that the update cost achieved is proportional to the size of
the witness set. Therefore, to improve the update cost, a relevant question is :
Can we maintain all-pairs reachability (shortest paths) corresponding to paths
of length < d using o(n) size witness set? We shall now use random sampling
to show that indeed a sub-linear size set S suffices.
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Consider any two vertices u and w in the graph. At an instance T, suppose we
receive a query asking for reachability (shortest-path) from u to w. Let py,
be a path (shortest path) from u to w of length € [d’,d|,d" < d in the graph
at that instance. There are )(d') vertices lying on the path p,,, and at least
one of them will be present in a random sample of 7 vertices with probability
> 11— % So in the witness set W (S, d), that we are maintaining, if S is a
uniform random sample of 7 vertices, then the reachability query from u to w
at instance T will be answered correctly with probability > 1 — % The success
probability can be made arbitrarily close to 1 at the expense of increasing the
sample size by a factor of clnn as mentioned in the following lemma.

Lemma 6 [12] Given a path py, of length | from u to w, if we sample ¢ Inn
vertices (for any ¢ > 0), then with probability 1 — - at least one of the vertices

will be picked from the path p,., in the sample.

Therefore, for maintaining all-pairs reachability (shortest paths) correspond-
ing to paths of length € [d’, d], it would suffice to maintain a witness-matrix
with respect to a set W(Sy,d), where Sy is a set formed by picking each
vertex of the graph independently with probability h(;,". Each reachability
(shortest-path) query from any vertex u to another vertex w in the graph
will be answered correctly with probability > 1 —1/n provided there is a path
(shortest-path) of length € [d', d] from u to w. Expected size of the set Sy is
nlnn

e This observation can be combined with Theorems 3 and 5 to yield the
following result.

Theorem 7 Given a graph G(V,E) and integers d,d" with 1 < d'" < d <
n, all-pairs reachability (or shortest paths) corresponding to paths of length
€ [d',d], can be maintained with optimal query time w.h.p. by maintaining a
witness matriz M with respect to the set W(Sq,d). It requires O(%mnlnn +
"Bdl#) total update time for maintaining all-pairs reachability, whereas for
maintaining all-pairs shortest paths the total update time required is O(%n?’ Inn).

4 Decremental algorithm for maintaining transitive closure

We maintain all-pairs reachability corresponding to short and long paths sep-
arately. We call the paths of lengths < d the short paths, and the paths of
length > d the long paths, where d will be fixed shortly. It follows that for a
pair of vertices u,w € V, there is a path from v to w if and only if there is
a short path or a long path from u to w. Therefore, for maintaining all-pairs
reachability under deletion of edges it suffices to solve the following two sub-
problems.

Maintaining reachability corresponding to short paths : It follows

13



from the description given in section 2 that out_tree of depth d rooted at a
vertex u maintains the set of vertices reachable within distance d from u. The
set of out_trees of depth d from every vertex can thus be used for maintaining
all-pairs reachability corresponding to short paths, and the total update time
required is O(mnd). In future we shall refer to this data structure by Sg.

Maintaining reachability corresponding to long paths : Theorem 7
shows that all-pairs reachability corresponding to paths of length € [r,2r]
can be maintained by keeping a witness matrix M with respect to the set
W (S,, 2r). To maintain all-pairs reachability for paths of length € [d, n]|, we
partition the interval [d, n] into log, % sub-intervals : [d, 2d], - - -, [2d, 2! d], - - -,
[n/2,n]. For each sub-interval [2'd, 2¢*'d] starting from i = 0, we build and
maintain the set W (Sy:4,2°7'd). It can be seen that at any stage in the se-
quence of edge-deletions, if there is a path of length > d from a vertex u to
a vertex w, the set U= 82 "/dW(SQid, 2"*1d) has a witness of reachability from
u to w. Therefore, in order to maintain all-pairs reachability corresponding
to long paths, it suffices to maintain a witness matrix M with respect to the
set U::E)Og? "/dW(SQid, 2'*1d). Now, using Theorem 7, the total update time for
maintaining the witness matrix M with respect to this set will be

i<log, % 31 31
Z mnlnn+n 'nn =0 mnln2n+n nn
= 2id d

We shall denote the above data structure by Lj. We maintain all-pairs reach-
ability by keeping the data structures S¢ and L? simultaneously. Deleting an
edge will require updating both the data structures, and thus the total up-
date time for maintaining all-pairs reachability (transitive closure) over any
sequence of edge-deletions will be

31 V1
O(mnd+mnln2n+n nn)zO(mnIHQn—l-nQ\/m) for d = 1"
d vm

Theorem 8 Given a graph G(V, E), all-pairs reachability information can be
maintained under deletion of edges by an algorithm that achieves O(1) query
time w.h.p. and O(nln2 n 4+ ”2%) amortized update time per edge deletion.
There are two previous algorithms for maintaining transitive closure under
deletion of edges with O(1) query time. The first algorithm due to La Poutre
and Van Leeuwen [18] achieves O(m) amortized update time while the second
algorithm due to Demetrescu and Italiano [6] achieves O(%%) amortized update

time. These two algorithms together establish an upper bound of O(n?) on
the update time. By suitably combining our algorithm with [18], we can state
the following Corollary.

Corollary 9 There exists a decremental algorithm for maintaining transitive
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closure with O(ng VInn) amortized update time and optimal query time w.h.p.

5 Decremental algorithm for maintaining all-pairs approximate short-
est paths

We introduced the terminologies of witness of reachability and witness of short-
est path. In this section, we introduce one more type of witness, namely a
witness of approximate shortest path.

Consider a pair of vertices u,w € V such that the vertex wu lies in in_tree
and the vertex w lies in out_tree of depth d rooted at a vertex v. The pair
(in_tree,in_tree)(v, d) not only acts as a witness of reachability from the ver-
tex u to the vertex w, it also gives an upper bound (thus estimates) of 2d
on the distance from u to w. In other words, if d(u, w) is the distance from
vertex u to vertex w, the tree-pair (in_tree,in_tree)(v,d) acts as a witness of

6(wa)-approximate shortest-path from u to w.

We present an efficient decremental algorithm for maintaining all-pairs (1+¢)-
approximate shortest paths for any ¢ > 0. The algorithm can be visualized
as a careful refinement of the algorithm for maintaining all-pairs reachability
described in the previous section. The following lemma is the basis for main-
taining witnesses of (1 + 2¢)-approximate distances for all-pairs of vertices
separated by distance € [d, d(1 + €)].

Lemma 10 Given a sample S.q C V' formed by picking each vertex inde-
pendently with probability he‘—d", the set W(S.q, (1/2 + €)d) has a witness of

(1 + 2¢)-approximate distance with probability 1 — 1/n, for a pair of vertices
separated by distance € [d,d(1 + €)].

PROOQOF. Let p,, be a shortest-path from vertex u to vertex w of length
€ [d,d(1 + €)] (see Figure 2). Let s,, be the set of the vertices lying on

Uo \ o >0 W

<(3+e€)d
Fig. 2. a witness of (1/2 + €)-approximate shortest path from u to w is rooted at v

the path p,,, that are at distance < ed/2 from the mid-point of p,,,. Clearly
|uw| = €d. It can be observed that an in_tree and an out_tree of depth (1/2+€)d
rooted at any v € s,,, captures the path p,,, completely, and thus establishes
an upper bound of (1 + 2¢)d on the distance from u to w. Since the actual
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distance from u to w lies in the interval € [d, (1 + €)d], therefore, the tree-pair
(in_tree,out_tree)(v,d) : v € Sy, is a witness of (1 4 2¢)-approximate shortest
path from u to w.

A sample S.; C V formed by picking each vertex independently with proba-
bility IE‘—d" has at-least one vertex from the set s,,, with probability > 1 —1/n.
So the set W (Seq, (5 +¢€)d) has a witness of (1+ 2¢)-approximate distance for a
pair of vertices separated by distance € [d, d(1 + €)] with probability > 1 — <.

It follows from Lemma 10 that in order to maintain (1 + 2¢)-approximate
distances/shortest-paths for all-pairs of vertices separated by distance € [d, (1+
€)d], it suffices if we maintain witness matrix for all-pairs reachability with re-
spect to the witness set W (Seq, (3+¢€)d). So we can state the following theorem
along the lines of Theorem 7.

Theorem 11 Given a graph G(V, E) and d < n, all-pairs (1+2€)-approzimate
shortest paths for all-pairs of vertices separated by distance € [d, (1 +€)d], can
be maintained under edge-deletions with optimal query time w.h.p. by main-
taining a witness matriz M for all-pairs reachability with respect to the set
W (Seq, (% + €)d). The total update time required over any sequence of edge-

deletions is O™ 4 "361%)

We use the idea of maintaining (1+¢)-approximate shortest paths correspond-
ing to short and long paths separately (also used for maintaining transitive
closure in the previous section). We call the paths of lengths < d the short
paths, and the paths of length > d the long paths, where d will be determined
in the analysis.

Maintaining (1 + ¢)-approximate shortest paths for vertex-pairs sep-
arated by long paths:

In order to maintain (1 4 €)-approximate shortest paths for pair of vertices
separated by distance € [d,n], we partition the interval [d,n] into Inj . %
sub-intervals : {((1 + €)’d, (1 + €)""'d)|i < Iny;2}. For each sub-interval
[(1 + €)id, (1 + €)"'d] starting from 7 = 0, we build and maintain the sets
W, = W(S1+0ia: (1 +€)'(5 + €)d) and update the matrix M accordingly.

Processing of an edge deletion involves updating each tree-pair, and searching
for new witness for each u,w € V' if Mu, w| ceases to be the witness due to
the recent edge deletion. Whenever search for witness of reachability from u
to w fails in list W;, we start search in next list W; ;. Thus the following
invariant (along the lines of I™) will be maintained for each u, w € V.

I . At any time if sets W;,, W, -+ W, iy < ig--- < ig are the only sets

that have witnesses of reachability from u to w, then M [u,w] will point to the
first witness of reachability (from u to w) in the list W,
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Let the length of the shortest-path from vertex u to vertex w lies in inter-
val ((1 4 €)’d, (1 + €)’*'d). Lemma 10 ensures that the list W; must have
a tree-pair which is a witness of (1 4 2¢)-approximate shortest path from u
to w, and the invariant I'* implies that M[u,w] will point to this tree-pair.
In other words, the reachability-witness matrix M with respect to the set
Uisien/iyy maintains witnesses of (1 + 2¢)-approximate shortest path for
each pair (u,w) separated by distance € [d, n]. Using Theorem 11, the total
update time required for maintaining the witness matrix M over any sequence

of edge-deletions will be

i<h§‘% mnlnn+ n3lnn —0 mnlnn+n31Hn
i=0 € (1+e)ied) €* d

So the amortized update time per edge deletion required for maintaining (1 +
€)-approximate shortest paths for all-pairs of vertices separated by long paths
is O(nlnn 4 n31nn)

€2 )

e2dm

Maintaining shortest paths for vertex-pairs separated by short paths
: We maintain out_tree of depth d from each vertex to report exact distance
between any pair of vertices separated by short paths. The amortized update
time per edge deletion is O(nd)

Balancing the update bounds for maintaining all-pairs (1 + €)-approximate

shortest path for long and short paths, we get d = ":\1} Hence the amortized

update time per edge deletion for maintaining (1 + €)-approximate shortest
paths will be O (232 + ”i%)
Theorem 12 Given an unweighted graph G(V, E), there exists a data struc-

ture for maintaining all-pairs (1+ €)-approzimate shortest paths/distance with

nlnn n’Vinn
+ ev/m

optimal query time w.h.p. and O( ) amortized update time per

edge-deletion.

King [16] gave a fully dynamic algorithm for maintaining all-pairs (1 + €)
approximate shortest paths that require O(” In® %) update time per edge dele-
tion. For updates consisting of edge deletions only, our algorithm improves the

update time by a factor of 0(7'1“”)

6 Decremental algorithm for maintaining all-pairs distances and
all-pairs shortest paths

We maintain all-pairs shortest paths/distances by keeping a witness of shortest
path (if exists) for each vertex-pair. It follows from Theorem 7 that for main-
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taining shortest paths for all-pairs of vertices separated by distance € [r, 2r],
it suffices to maintain a matrix of shortest-path witnesses with respect to
the set W (S,,2r). In order to maintain shortest paths for all-pairs of ver-
tices (irrespective of the distance), we build and maintain W (S,, 2r) for each
re{1,2,4,---,2" .- n/2}. 1t follows from subsection 3.2 that with respect
to the set U= "W (Syi, 21+1), an entry M[u, w] gets initialized to a witness
of the shortest path from u to w for all u,w € V in total time O(n?).

Processing of an edge deletion involves updating each tree-pair and searching
for new shortest-path witness for each pair u, w € V' if path length from u to w
passing through M[u, w] has increased due to the recent edge deletion. While
searching for a witness of path length r from u to w, we will confine our search
within the list W (Sy, 2°*1) for 2 < r < 2'*1, Whenever search for witness
of path of length 2! fails in the list W (Sy, 2°"!), we move onto the next
list W (Sqi+1,212). We proceed in this way for vertex-pair (u,w) performing
O(nlnn) work per witness list (scanning list of length 2 Inn, for 2° times).
Since there are now log, n lists and a total of n? vertex-pairs, the total update
cost will be O(n®In*n) over any sequence of edge deletions. We can thus state
the following theorem.

Theorem 13 Given an unweighted graph G(V, E), there exists a data struc-
ture for maintaining all-pairs shortest distances in O(%) amortized update

time per edge-deletion and taking O(1) time to answer a distance query w.h.p.

Remark : Demetrescu and Italiano [7] designed an O(”E3 In®n) update time
algorithm for maintaining all-pairs shortest paths under deletion of edges.
Their algorithms achieves O(1) query time w.h.p. and improves the previous
O(n?) update time of King [16] for dense graphs. Our algorithm improves the
update time further by a factor of O(Inn).

For initial complete graph, the new algorithm achieves O(nIn®n) amortized
update time. But for sparse graphs the update time may be #(n?). So there
is still no decremental algorithm for maintaining all-pairs shortest distances
that achieves sub-quadratic update time for all graphs and takes O(1) time to
answer distance query. However, for the case of shortest path reporting prob-
lem, we are able to design a decremental algorithm that requires O(n%\/E)
update time for any graph and answers any query in optimal time. The im-
provement is achieved by combining the concept of filtering search [2] with
the data structures S¢, L? in a novel way as follows.

Consider any two vertices u and w in a graph G(V, E) under deletion of edges.
Suppose we receive a query “report distance from u to w” at an instance.
Let w be reachable from w at that instance. If the shortest path from u to
w is of length [, < d, we are able to answer the query in O(1) time using
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out_tree(u, d) of the data-structure S¢. Otherwise 2'd < I, < 2/7'd holds for
some 0 < i < log, 2. Note that w.h.p. the set W (Sy4,2'7'd) has a witness of
the shortest path from u to w. But finding the witness may require O(]Sqi4|)
time (not constant !) since it takes O(1) time to find the length of the path
from u to w lying in a tree-pair € W (Sy:q, 2°71d). This forced us to maintain a
matrix of all-pairs shortest-path witnesses so that we can answer any distance
reporting query in constant time. However, for a shortest-path reporting query,
we must in any case spend O(l,,,) time to report all the edges on the shortest
path. Therefore, if we spend additional O(l,,) time to find the shortest path
witness, we will still be achieving O(l,,,) query time for shortest path report-
ing, which is optimal. (This is indeed the idea of filtering search [2]). Now to
materialize this idea, we need to ensure that whenever the shortest-path to
be reported lies in the interval [d, n], the number of witnesses to be searched
for finding the shortest path should be O(d). In other words, the following
inequality must hold :

| Saig

<d forall 0<i<logyn/d

Since [Syi4| = gi7Inn, therefore, vnlnn is the right choice for d. Note that

the total number of witnesses in LY will be O(v/nlnn) for this value of d.
Using the data structures S¢ and L7 for d = v/nlnn, we can process any
shortest-path reporting query (say, from u to w) in optimal time as follows :

First inquire iof w is present in the out_tree rooted at w. This operation takes
constant time. If the answer is yes, we can report the shortest path using the
out_tree rooted at u; otherwise inquire if w is reachable from w or not, using
the witness matriz M of the data-structure L. If M|u,w] is pointing to null,
we report in O(1) time that there is no path from u to w. Otherwise, it can be
concluded that the shortest path length L, € [Vnlnn+1,n—1]. In this case, at
least one of the vertex of the shortest path from u to w must be present w.h.p.
in the sampled set of witnesses. We search the entire set of witnesses to find
the witness of shortest path. The size of the witness set being O(vnlnn), we
can thus find the witness of the shortest path from u to w in O(vnlnn) time
and then report the shortest path from u to w passing through it in additional
O (L) time. Since ly, > Vnlnn, the total time taken for processing a shortest
path reporting query is O(ly,) (and hence optimal).

The amortized update time per edge deletion for the two data structures S¢
and L} will be

3
O(nd—i—n—dlnn) = O(n%vlnn) for d=+vnlnn

ma

Theorem 14 An unweighted graph G(V, E) can be preprocessed to build a
data structure that answers any on-line shortest path reporting query in op-
timal time w.h.p. while ensuring O(min(n2v/Inn, %)) amortized update
time per edge-deletion.
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7 Space Requirement of our Algorithms

It can be seen that all the algorithms given in this paper employ a witness
matrix M and O(n) number of in_trees and out_trees. The matrix M clearly
occupies §(n?) space. Although the earlier scheme given in [16] requires 6(m)
space for maintaining an in_tree (or an out_tree), it has been improved to O(n)
by King and Thorup [17]. Thus the total space requirement for maintaining
O(n) number of in_trees or out_trees is O(n?). Hence the space requirement of
all the algorithms given in this paper is O(n?).

8 Conclusion and Open Problems

In this paper, we presented improved decremental algorithms for maintaining
transitive closure and all-pairs exact /approximate shortest paths with optimal
query time. The key concept underlying our algorithms has been the implicit
scheme for maintaining reachability /shortest-path information. Later we also
use this scheme along with a new hierarchical distance reporting scheme in
paper [1] for the problem of maintaining all-pairs approximate shortest paths
in undirected unweighted graphs under deletion of edges. We show that it is
possible to achieve O(n'*?) bound (for arbitrarily small € > 0) on amortized
update cost at the expense of increased approximation factor of the distance
reported.

There have been new developments in the field of dynamic graph algorithms
ever since we submitted this paper. For the problem of all-pairs reachabil-
ity under edge-deletions, Roditty and Zwick [19] design an algorithm that
requires O(n) amortized update cost, and thus improves our bounds for all-
pairs reachability problem. For fully dynamic maintenance of all-pairs shortest
path, Demetrescu and Italiano [8] present an algorithm that achieves O(n?)
amortized cost per update which is superior to the previous O(n?*®) bound
achieved by King [16]. Note that for all-pairs approximate shortest paths in
undirected graphs, there are static algorithms [3,9] that require O(n?Inn)
time. In these cases, the fully-dynamic algorithm of [8] provides only logarith-
mic improvement. Therefore, it is desirable to design a fully dynamic algorithm
for maintaining all-pairs approximate shortest paths with o(n?) update time,
possibly at the expense of increased query time.
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