
Improved De
remental Algorithms forMaintaining Transitive Closure and All-PairsShortest Paths ?
Surender Baswana a;�;1 Ramesh Hariharan b Sandeep Sen a;2aDept. of Comp. S
. and Engg., Indian Institute of Te
hnology Delhi, New Delhi,IndiabDept. of Comp. S
. and Automation, Indian Institute of S
ien
e, Bangalore,India

Abstra
tThis paper presents improved algorithms for the following problem : Given an un-weighted dire
ted graphG(V;E) and a sequen
e of on-line shortest-path/rea
habilityqueries interspersed with edge-deletions, develop a data-stru
ture that
an answerea
h query in optimal time, and
an be updated eÆ
iently after ea
h edge-deletion.The
entral idea underlying our algorithms is a s
heme for impli
itly storing all-pairs rea
hability/shortest-path information, and an eÆ
ient way to maintain thisinformation.Our algorithms are randomized and have one-sided inverse polynomial error forquery.Key words: BFS tree, dynami
, graph, transitive
losure, shortest paths
? Preliminary version of this paper appeared in 34th ACM Symposium on Theoryof Computing (STOC), May 19-21, 2002, Montreal,Quebe
, Canada.� Corresponding author.Email addresses: sbaswana�
se.iitd.ernet.in (Surender Baswana),ramesh�
sa.iis
.ernet.in (Ramesh Hariharan), ssen�
se.iitd.ernet.in(Sandeep Sen).1 Work was supported in part by a PhD fellowship from Infosys Te
hnologies Ltd.,Bangalore.2 Work was supported in part by an IBM UPP awardPreprint submitted to Journal of Algorithms 9 September 2004

1 Introdu
tionThe following two problems are among the most fundamental algorithmi
graph problems :� Transitive Closure : Pro
ess a given dire
ted graph 3 G(V;E) so thatany query of the form, \Is there a path from u to v in the graph?",
an beanswered eÆ
iently.� All-Pairs Shortest Paths Problem : Pro
ess a given unweighted graphG(V;E) so that any query of the form, \Report the shortest path (or dis-tan
e) from vertex u to a vertex v?",
an be answered eÆ
iently.There exist
lassi
al algorithms that take O(mn) time for the two problemsso that any query
an be answered in O(1) time. There also exist algorithmsbased on fast matrix multipli
ation that require sub-
ubi
 time for the twoproblems. In parti
ular, using the fastest known matrix multipli
ation algo-rithms (Coppersmith and Winograd [4℄), the best bound on
omputing tran-sitive
losure is O(n2:376), whereas for the all-pairs shortest paths problem, itis O(n2:575) [20℄.There are many appli
ations in
ommuni
ation networks, in
remental parsergeneration [14℄ and relational databases augmented with transitive
losure[15,11℄ that require eÆ
ient solutions of the above problems for a dynami
graph. In a dynami
 graph problem, an initial graph is given, followed by ansequen
e of on-line queries interspersed with updates whi
h
an be insertionor deletion of edges. We have to
arry out the updates and answer the querieson-line in an eÆ
ient manner. Ea
h query has to be answered with respe
tto the present state of the graph, i.e., in
orporating all the updates pre
edingthe query. One trivial way to solve su
h a dynami
 graph problem is thatwe run the stati
 graph algorithm after every update. The goal of a dynami
graph algorithm is to update the solution eÆ
iently after the dynami

hanges,rather than having to re-
ompute it from s
rat
h ea
h time.For every stati
 graph problem, there exists its dynami

ounterpart. We
an
lassify dynami
 graph problems a

ording to the types of updates allowed.A problem is said to be fully dynami
 if the update operations in
lude bothinsertions and deletions of edges. A problem is
alled partially dynami
 if onlyone type of update, either insertion or deletions, is allowed. If only insertionsare allowed, the problem is
alled in
remental; if only deletions are allowed, itis
alled de
remental.We present eÆ
ient de
remental algorithms for maintaining all-pairs shortest-paths and transitive
losure in an unweighted graph. The query algorithms3 In this paper graphs will imply dire
ted graphs2

are Monte-Carlo with one sided error (the probability of error being inversepolynomial).1.1 Previous work and our
ontributionTransitive Closure :La Poutre and Van Leeuwen [18℄ gave a de
remental algorithm for maintain-ing transitive
losure with O(m) amortized update time per edge deletionand answering ea
h query in O(1) time. Demetres
u and Italiano [6℄ gave ade
remental algorithm for the problem that requires O(n3=m) amortized up-date time whi
h is better for dense graphs. For an initial
omplete graph,the algorithm a
hieves O(n) amortized update time per edge deletion [5℄, butfor sparse graphs, the update time
an be even �(n2). It
an be seen that a
ombination of these two algorithms yields an upper bound of O(n 32) on theupdate time while keeping O(1) query time. Henzinger and King [13℄ gave ade
remental randomized algorithm that a
hieves O(n ln2 n) amortized updatetime but at the expense of in
reased query time of O(nlnn). The query has onesided inverse polynomial error, i.e., the answer to any query may be in
orre
tin the sense that it may not report a path when there exists one. However,the probability of an error
an be made smaller than 1n
 for arbitrary
 > 0.Subsequently we will use the a
ronym w.h.p. to denote probability ex
eeding1� 1n
 for any
 > 0.In this paper, we present an eÆ
ient algorithm that a
hieves O(1) query timew.h.p. and requires O(n ln2 n + n2pm lnn) amortized update time per edge-deletion. Our algorithm a
hieves an improvement in the update time
om-pared to the deterministi
 algorithms while ensuring O(1) query time. Bysuitably
ombining with [18℄, our algorithm a
hieves an improved upper boundof O(n 43 3plnn) on amortized update time per edge deletion for the problem ofmaintaining transitive
losure with optimal query time.All-pairs shortest paths :Demetres
u and Italiano [7℄ gave a de
remental algorithm for maintaining all-pairs shortest paths under deletion of edges that a
hieves O(n3m ln3 n) amor-tized update time while a
hieving optimal query time w.h.p. Their algorithmimproves the previous O(n2) update time of [16℄ for dense graphs.We present two de
remental algorithms for the all-pairs shortest paths prob-lem. For distan
e reporting problem, we give a simpler
ombinatorial algo-rithm that requires O(n3m ln2 n) amortized update time while a
hieving O(1)query time. For the shortest path reporting problem (i.e. the a
tual sequen
eof edges), we use the idea of �ltering sear
h in a novel way to design an al-3

Maintaining All-Pairs Rea
habilityPrevious ImprovedQuery Update Time Update TimeIs v rea
hable from u ?report a path from u to v O �n 32� O �n 43 3plnn�Maintaining All-Pairs (1 + �)-Approximate Shortest PathsPrevious ImprovedQuery Update Time Update Timereport (1 + �)-approx. distan
ereport (1 + �)-approx. shortest path none O �n lnn�2 + n2plnn�pm �Maintaining All-Pairs Shortest PathsPrevious ImprovedQuery Update Time Update Timereport the distan
e from u to v O �n3m ln3 n� O �n3m ln2 n�report the shortest path from u to v O(n3m ln3 n) min8><>:O(n 32plnn);O(n3m ln2 n)Table 1All the update bounds (old and new) are amortized. Throughout this paper, ourquery times are optimal but there is one sided inverse polynomial error in the query-answer.gorithm that a
hieves O(min(n 32plnn; n3m ln2 n)) update time while a
hievingoptimal query time. Hen
e we redu
e the upper bound on the worst
aseamortized update time for the problem of maintaining all-pairs shortest pathsunder deletion of edges by a fa
tor of O(q nlnn).Next, we present an eÆ
ient de
remental algorithm that o�ers a trade-o� be-tween update time and approximation fa
tor of the shortest path. For main-taining all-pairs (1 + �)-approximate shortest paths, our algorithm a
hievesO(n lnn�2 + n2plnn�pm) amortized update time per edge-deletion for arbitrarily small� > 0. We summarize our results in Table 1.It may be noted that our algorithms are simple to implement and do not makeuse of any sophisti
ated matrix multipli
ation algorithms. We show that thespa
e requirement of our data stru
tures is O(n2).4

2 Overview of our algorithms2.1 NotationsGiven an unweighted graph G(V;E), v 2 V , and a positive integer d, we de�nethe following notations that will be used in the remaining paper.� out tree(v) : a
omplete breadth-�rst-sear
h (BFS) tree rooted at the vertexv in the graph G(V;E).� in tree(v) : a
omplete BFS tree rooted at the vertex v in the graph formedby reversing all the edge-dire
tions in G(V;E).� out tree(v; d) : a BFS tree of depth d rooted at the vertex v in the graphG(V;E).� in tree(v; d) : a BFS tree of depth d rooted at the vertex v in the graphformed by reversing all the edge-dire
tions in G(V;E).� (in tree,out tree)(v; d) : a pair of in tree(v; d) and out tree(v; d).� W (S; d) : f(in tree,out tree)(v; d) jv 2 S g, for a given S � V .� Sr : A random set of verti
es formed by pi
king ea
h vertex randomly in-dependently with probability lnnr . The expe
ted size of the set Sr is n lnnr .With a BFS tree, we also keep an auxiliary array to determine in
onstanttime whether a vertex belongs to the tree or not. In addition, for ea
h vertexthat belongs to the tree we keep information about its level (its distan
e fromthe root) and its parent in the tree. With all this information that we main-tain in a BFS tree, it
an be seen that in addition to maintaining rea
habilityinformation from v, the tree out tree(v; d)
an also serve the purpose of main-taining the distan
e/shortest-path information to all the verti
es lying withindistan
e d from v. In the same way, in tree(v; d)
an be used for maintainingrea
hability information as well as the shortest path to v from all the verti
esfor whom v lies within distan
e d.While edges are being deleted in a graph, the levels of verti
es in a BFS treemay in
rease. Thus maintaining a BFS tree of depth d, after an edge deletion,involves �nding the set of verti
es whose level has in
reased, eliminating thosefrom this set whose level has fallen beyond d, and assigning the rest of theverti
es (with level � d still) to their new levels.The best known algorithm for maintaining an in tree or an out tree is givenby Henzinger and King [13℄ along the lines of [10℄.Lemma 1 [13℄ Given an unweighted graph G(V;E), a vertex v 2 V and apositive integer d, an in tree(v; d) (or an out tree(v; d))
an be maintained inO(d) amortized update time per edge deletion.5

2.2 Main IdeaThe simplest way of maintaining all-pairs rea
hability (shortest paths) in anunweighted graph is to maintain an out tree up to depth n from ea
h vertex.It follows from Lemma 1 that the amortized update time required by thisapproa
h (maintaining n out trees of depth n) will be O(n2) per edge deletion.In order to develop eÆ
ient de
remental algorithm for transitive
losure andall-pairs shortest paths, we explore alternate s
hemes of maintaining all-pairsrea
hability and shortest paths. In this endeavor, we present s
hemes thatmaintains rea
hability and exa
t (or approximate) shortest path informationimpli
itly.Consider a pair of verti
es u; w 2 V su
h that there is a path from vertex u tow, and let v be any intermediate vertex on the path. It
an be seen that the ver-tex u belongs to in tree rooted at v, and the vertex w belongs to out tree rootedat v. Thus
ombined together in tree, out tree rooted at v stores the path fromu to w impli
itly (the
omplete path and its length
an be retrieved by query-ing in tree(v) and out tree(v)). In other words, the pair (in tree(v),out tree(v))a
ts as a witness of rea
hability from u to w. Analogously if the vertex v lieson the shortest path from u to w, the pair (in tree(v),out tree(v)) pair a
ts asa witness of shortest path from u to w.The above mentioned s
heme of keeping rea
hability (shortest path) informa-tion impli
itly suggests that in order to maintain all-pairs rea
hability (short-est paths) under deletion of edges, it suÆ
es to maintain a witness (if oneexists) of rea
hability (shortest path) for ea
h vertex-pair (u; w). In the fol-lowing se
tion, we design eÆ
ient algorithms for maintaining witnesses of all-pairs rea
hability and shortest paths
orresponding to paths of length in aninterval [d0; d℄ for any 1 � d0 < d � n. These algorithms form the basis fordeveloping eÆ
ient de
remental algorithms for the main problems as follows.Maintaining transitive
losure : The s
heme of maintaining rea
habilityimpli
itly (by keeping witnesses) proves to be eÆ
ient for maintaining all-pairs rea
hability
orresponding to long paths. On the other hand, the s
hemeof maintaining rea
hability expli
itly (by keeping out tree from every vertex)proves to be eÆ
ient for maintaining rea
hability
orresponding to short paths.We
ombine the two strategies together to a
hieve improved update time ofO(n ln2 n + n2pmplnn) per edge deletion.Maintaining all-pairs approximate shortest paths : Analogous to wit-ness of rea
hability and shortest paths, we propose the terminology of wit-ness of approximate shortest paths. It turns out that our data stru
ture formaintaining transitive
losure
an be suitably adapted to maintain all-pairs6

(1 + �)-approximate shortest paths 4 in unweighted graphs.Maintaining all-pairs exa
t shortest paths : For the problem of main-taining all-pairs shortest distan
es, the strategy of maintaining witness ofshortest path for every vertex-pair leads to a
hieving O(n3m ln2 n) update time.For the
ase when query is to report the shortest path, we use the idea of �lter-ing sear
h [2℄ to redu
e the update time further to O(min(n 32plnn; n3m ln2 n))whi
h is bounded by O(n 32plnn) for all graphs.3 Maintaining witnesses of rea
hability/shortest-paths for all-pairsof verti
es separated by distan
e 2 [d0;d℄In this se
tion we design eÆ
ient algorithms for maintaining rea
hability andshortest paths for all the vertex-pairs (u; w) su
h that there is a path fromu to w of length 2 [d0; d℄. For the rea
hability problem, the algorithm willmaintain a witness of rea
hability for every vertex-pair (u; w) if there is pathof length 2 [d0; d℄ from u to w. For the all-pairs shortest path problem, thealgorithm will maintain a witness of the shortest path for every vertex-pair(u; w) among all paths from u to w of length 2 [d0; d℄.Let S � V , and let W (S; d) be the set of pairs of in tree and out tree ofdepth d rooted at ea
h vertex of the set S (see the notations de�ned in se
tion2.1). We begin with the design of eÆ
ient algorithms for maintaining all-pairs rea
hability and shortest paths with tree-pairs from the set W (S; d) aswitnesses, i.e., the paths to be
onsidered for rea
hability (shortest-path) areonly those paths that are
aptured by the tree-pairs of the set W (S; d). Thealgorithm
an be used for maintaining rea
hability (shortest paths) for all-pairs of verti
es separated by distan
e 2 [d0; d℄, if we
hoose S = V . It turns outthat the update time of the algorithm is dire
tly proportional to the size of thewitness set. Subsequently, to improve the update time, we redu
e the numberof witnesses, i.e. jSj by using random sampling. This observation was exploitedby Henzinger and King [13℄ for designing a de
remental algorithm to maintainall-pairs rea
hability with O(n ln2 n) update time at the expense of O(nlnn)query time. We extend this approa
h to its full potential for maintaining all-pairs shortest paths and transitive
losure with optimal query time.3.1 Maintaining all-pairs rea
hability with respe
t to a witness setLet W (S; d)=f(in tree, out tree)(v; d)jv 2 Sg be the set of witnesses kept in alist, also denoted by W (S; d). Let u; w be any two verti
es in the graph. If u4 Path with length at most (1 + �) times the length of the shortest path7

and w lie respe
tively in in tree(v; d) and out tree(v; d) for some vertex v 2 S,then (in tree,out tree)(v; d) is a witness of rea
hability from u to w. Findingout if there is any witness in the set W (S; d) for rea
hability from u to w willrequire querying ea
h (in tree,out tree)(v; d) 2 W (S; d). Thus the query timewill be O(jSj). In order to a
hieve O(1) query time, we maintain a witnessmatrix M . For ea
h pair (u; w), at every stage M [u; w℄ points to some vertexv 2 S if (in tree,out tree)(v; d) is a witness of rea
hability from u to w.We initialize the matrixM as follows : The matrixM has all entries pointing tonull initially. For every (in tree,out tree)(v; d)2 W (S; d), we do the following.For ea
h u 2 in tree(v; d) and for every w 2 out tree(v; d), we update M [u; w℄to point to v if it was pointing to null previously. Thus it requires O(n2) timeper tree-pair from the set W (S; d) to initialize the witness matrix M .Lemma 2 Given a graph G(V;E), a set of tree pairs W (S; d) for a set S � Vand a positive integer d, it takes O(n2jSj) time to initialize matrix M forstoring witnesses of rea
hability for all-pairs of verti
es with respe
t to the setW (S; d).Noti
e that as the edges are being deleted, a tree-pair (in tree,out tree)(v; d)2W (S; d) may
ease to be a witness of rea
hability for a vertex-pair (u; w). Thishappens when either u
eases to belong to in tree(v; d) or the vertex w
easesto belong to out tree(v; d). We now des
ribe an algorithm for updating theentries of matrix M after an edge deletion.Updating matrix M for witnesses of rea
hability :We perform the following three operations after deletion of an edge.(1) Updating the BFS trees of the set W (S; d) :For ea
h v 2 S, we update in tree(v; d) and out tree(v; d) for the edgedeletion.(2) Finding the pairs of verti
es whose witness of rea
hability has expired :Let (in tree,out tree)(v; d) be a tree-pair from the set W (S; d), and letX and Y be the set of verti
es that
ease to belong to in tree(v; d) andout tree(v; d) respe
tively. (These sets are already
omputed in step 1.)We pro
ess the set X as follows (the set Y is pro
essed in a similarfashion). For every u 2 X, we �nd the set su of verti
es su
h thatM [u; w℄is v for ea
h w 2 su. By inspe
ting the row M [u; ℄ it requires O(n) timeper u 2 X to �nd su. It
an be seen that (in tree,out tree)(v; d)2W (S; d)has
eased to be a witness of rea
hability from u to ea
h w 2 su.By pro
essing ea
h tree-pair in the manner des
riber above, we
an
ompute all-pairs of verti
es whose
urrent witness of rea
hability in Mhas expired.(3) Sear
hing for a new witness of rea
hability :Let (u; w) be a pair of verti
es whose
urrent witness of rea
hability, say8

toSearch for a new witness of reachability from

. . .PSfrag repla
ementsu
uu

u v v w
ww

wx
xW (S; d)

M
in tree(v; d) out tree(v; d)

Fig. 1. The sear
h for a new witness of rea
hability from u to w when(in tree,out tree)(v; d)
eases to be the witness.(in tree,out tree)(v; d) has expired due the re
ent edge-deletion. We sear
hthe listW (S; d) starting from the tree-pair following (in tree,out tree)(v; d),and �nd a witness of rea
hability from u to w (spending O(1) time pertree-pair in W (S; d)). If we rea
h the end of the list W (S; d), we updateM [u; w℄ to point to null, otherwise we update M [u; w℄ to point to theroot of the new witness found.The following invariant is maintained throughout the series of edge deletions.I � : M [u; w℄ points to the �rst tree-pair in the list W (S; d) that is a witness ofrea
hability from u to w.The invariant holds just after the initialization of M . It
an be easily veri�edthat the pro
edure des
ribed above preserves the invariant after ea
h edgedeletion. By indu
tion on the number of edge deletions, we
an
on
lude thatthe invariant I � always holds.Cost Analysis : As mentioned in Lemma 2, the total
ost of initializing thewitness matrix M is O(n2jSj). We now assess the total
ost in
urred in thethree kinds of operations that we perform to maintain matrix M .The �rst operation deals with updating ea
h tree-pair under edge deletion.It requires O(d) amortized
ost per edge deletion for maintaining the in treeand out tree of depth d rooted at a vertex. Hen
e the total
ost of maintainingtree-pairs of set W (S; d) will be O(mdjSj) over any sequen
e of edge deletions.Now
onsider the se
ond operation that
omputes the pairs of verti
eswhose witness of rea
hability has expired after an edge deletion. It followsfrom the des
ription given above that for a tree-pair (in tree,out tree)(v; d)2W (S; d), we in
ur O(n)
ost per vertex when the vertex
eases to belong toin tree(v; d) (or out tree(v; d)). Hen
e the total
ost in
urred in se
ond opera-tion is O(n2jSj) over any sequen
e of edge deletions.To assess the total
ost in
urred in the third operation, that is, sear
hingfor a new witness of rea
hability, note that we
onsider a tree-pair from the9

list W (S; d) exa
tly on
e for being a witness of rea
hability for a pair (u; w).This is be
ause on
e a tree-pair (in tree,out tree)(v; d)
eases to be a witnessof rea
hability from u to w, it
an never be
ome a witness of rea
hability fromu to w in future. Hen
e the total
ost in
urred in sear
hing for new witnesseswill be O(n2jSj) over the entire sequen
e of edge-deletions.Summing up the
ost of all operations, we
on
lude that the total
ost in
urredin maintaining all-pairs rea
hability over any sequen
e of edge deletions isO(mdjSj+ n2jSj).Theorem 3 Given a graph G(V;E), a set of tree-pairs W (S; d) for a set S �V and a positive integer d, all-pairs rea
hability with respe
t to the witnessesW (S; d)
an be maintained under edge-deletions with O(1) query time andO((md+ n2)jSj) total update time.3.2 Maintaining all-pairs shortest paths with respe
t to a witness setThe algorithm we des
ribe is analogous to the algorithm des
ribed in theprevious subse
tion. Let W (S; d)=f(in tree, out tree)(v; d)jv 2 Sg be the setof witnesses kept in a list, also denoted by W (S; d). We maintain a witnessmatrix M su
h that for ea
h u; w 2 V , M [u; w℄ points to the �rst tree-pairin the list W (S; d) whi
h is a witness of the shortest path among all pathsfrom u to w
aptured by the tree-pairs from the set W (S; d). The matrixM isinitialized as follows. The matrix M has all entries pointing to null initially.For every (in tree,out tree)(v; d)2 W (S; d), we do the following. For ea
h u 2in tree(v; d) and for every w 2 out tree(v; d), we updateM [u; w℄ to point to v ifit is pointing to null or if the tree-pair asso
iated with the existing M [u; w℄ isa witness of a path from u to w with longer length than the tree-pair (in tree,out tree)(v; d). It follows easily that it requires O(n2) time per element of theset W (S; d) to initialize the matrix.Lemma 4 Given a graph G(V;E), a set of tree pairs W (S; d) for a set S � Vand a positive integer d, it takes O(n2jSj) time to initialize matrix M forstoring witnesses of shortest paths for all-pairs of verti
es with respe
t to theset W (S; d).For any pair of verti
es u; w 2 V , let M [u; w℄ = v after the initializationof the matrix M . Noti
e that as the edges are being deleted, the tree-pair(in tree,out tree)(v; d)2 W (S; d) may
ease to be a witness of the shortestpath for the vertex-pair (u; w). This happens when either u in
reases its levelin in tree(v; d) or the vertex w in
reases its level in out tree(v; d). We nowdes
ribe an algorithm for updating the entries of M after an edge deletion.10

Updating matrix M for witnesses of shortest paths : We perform thefollowing three operations after deletion of an edge.(1) Updating the BFS trees of the set W (S; d) :For ea
h v 2 S, we update in tree(v; d) and out tree(v; d) for the edgedeletion.(2) Finding the pairs of verti
es whose witness of shortest path has to beupdated :Let (in tree,out tree)(v; d) be a tree-pair from the set W (S; d), and let Xand Y be the sets of verti
es whose level has in
reased in in tree(v; d)and out tree(v; d) respe
tively. We pro
ess the set X as follows (the setY is pro
essed in a similar fashion). We s
an row M [u; ℄ for ea
h u 2 Xto
ompute all those verti
es w 2 V su
h that M [u; w℄ = v. It
an beseen that the length of the shortest path from u to w passing through vhas in
reased. As a result, we
an not be sure that (in tree,out tree)(v; d)would still be a witness of shortest path from u to w. This is be
ause theremight be some other tree-pair in the set W (S; d) that
ould be a witnessof a path from u to w with length less than that of the new path fromu to w passing through v. So we need to �nd a new witness of shortestpath from u to w.By pro
essing ea
h tree-pair in the manner des
riber above, we
an
ompute all-pairs of verti
es whose
urrent witness of shortest path hasto be updated in M .(3) Sear
hing for a new witness of shortest path : Let (u; w) be a pair ofverti
es su
h that a new witness of shortest path from u to w has to besear
hed for due to the re
ent edge-deletion (as mentioned in the se
ondoperation mentioned above). Let (in tree,out tree)(v; d) be the witness ofshortest path (of length say r) from u to w prior to the edge deletion.We s
an the list W (S; d) starting from the su

essor of the tree-pair(in tree,out tree)(v; d) in sear
h for a witness of a path of length r fromu to w. If we �nd one, we stop; otherwise there is no path from u to w oflength � r in any tree-pair from the set W (S; d). In this
ase, we performanother s
an starting from the head of the list W (S; d) in sear
h of awitness of path-length r+1. We in
rement r until we �nd one witness orr be
omes 2d. In the latter
ase, we
on
lude that there is no path fromu to w
aptured in any tree-pair of the set W (S; d).The following invariant is maintained throughout the series of edge deletions.I APSP : At every stage M [u; w℄ points to the �rst tree-pair in the list W (S; d)that is a witness of the shortest path from u to w among all paths from u tow
aptured by tree-pairs of the set W (S; d).From the initialization of M , it follows that the invariant holds in the begin-ning. A simple indu
tive proof on the number of edge deletions
an be used11

to show that the invariant I APSP always holds.Cost Analysis : As mentioned in Lemma 4, the total
ost of initializing thematrixM is O(n2jSj). Now we shall assess the total
ost in
urred in the threekinds of operations that we perform to maintain the matrix M .The total
ost of the �rst operation over any sequen
e of edge deletions isO(mdjSj).During the se
ond operation, for every v 2 S, we
ompute the set of vertex-pairs whose distan
e in (in tree,out tree)(v; d) has in
reased. Sin
e we do notpro
ess a vertex-pair (u; w) whenever either of them falls beyond distan
e dfrom v, therefore, a vertex-pair will be reported in this set at most 2d timesby a tree-pair. It follows that a total of O(n2d) time will be spent per tree-pair in
omputing su
h sets over the entire sequen
e of edge deletions. Sin
ethere are jSj tree-pairs, the total
ost in
urred in the se
ond operation will beO(n2djSj).To assess the total
ost in
urred in the third operation, the key observationis that for a parti
ular distan
e r � d and a vertex-pair (u; w), a tree-pair fromthe set W (S; d) is
onsidered at most on
e for being a witness of path-lengthr (from u to w). This is be
ause a tree-pair that
eases to be a witness ofpath-length r from u to w
an never be
ome a witness of path-length r from uto w in future. Thus for a pair of verti
es, the total
ost in
urred in sear
hingthe list W (S; d) will be O(djSj) over any sequen
e of edge deletions. Sin
ethere are O(n2) pairs of verti
es, the total
ost in
urred in the third operationwill be O(n2djSj).Summing up the
ost of all operations, we
an
on
lude that the total
ostin
urred in maintaining all-pairs shortest paths with respe
t to the witnessset W (S; d) is O(n2jSj+mdjSj+ n2djSj), i.e., O(n2djSj).Theorem 5 Given a graph G(V;E), a set of tree-pairs W (S; d) for a setS � V and a positive integer d, all-pairs shortest paths with respe
t to thewitnesses W (S; d)
an be maintained under edge-deletions with optimal querytime and O(n2djSj) total update time.3.3 Maintaining rea
hability and shortest paths
orresponding to all-paths oflength 2 [d0; d℄It follows from Theorem 3 (and 5) that by
hoosing witness set W (V; d), we
an maintain all-pairs rea
hability (shortest paths)
orresponding to paths oflength � d. Noti
e that the update
ost a
hieved is proportional to the size ofthe witness set. Therefore, to improve the update
ost, a relevant question is :Can we maintain all-pairs rea
hability (shortest paths)
orresponding to pathsof length � d using o(n) size witness set? We shall now use random samplingto show that indeed a sub-linear size set S suÆ
es.12

Consider any two verti
es u and w in the graph. At an instan
e T , suppose were
eive a query asking for rea
hability (shortest-path) from u to w. Let puwbe a path (shortest path) from u to w of length 2 [d0; d℄; d0 < d in the graphat that instan
e. There are
(d0) verti
es lying on the path puw, and at leastone of them will be present in a random sample of nd0 verti
es with probability� 1 � 1e . So in the witness set W (S; d), that we are maintaining, if S is auniform random sample of nd0 verti
es, then the rea
hability query from u to wat instan
e T will be answered
orre
tly with probability � 1� 1e . The su

essprobability
an be made arbitrarily
lose to 1 at the expense of in
reasing thesample size by a fa
tor of
 lnn as mentioned in the following lemma.Lemma 6 [12℄ Given a path puw of length l from u to w, if we sample
nl lnnverti
es (for any
 > 0), then with probability 1� 1n
 , at least one of the verti
eswill be pi
ked from the path puw in the sample.Therefore, for maintaining all-pairs rea
hability (shortest paths)
orrespond-ing to paths of length 2 [d0; d℄, it would suÆ
e to maintain a witness-matrixwith respe
t to a set W (Sd0; d), where Sd0 is a set formed by pi
king ea
hvertex of the graph independently with probability lnnd0 . Ea
h rea
hability(shortest-path) query from any vertex u to another vertex w in the graphwill be answered
orre
tly with probability � 1�1=n provided there is a path(shortest-path) of length 2 [d0; d℄ from u to w. Expe
ted size of the set Sd0 isn lnnd0 . This observation
an be
ombined with Theorems 3 and 5 to yield thefollowing result.Theorem 7 Given a graph G(V;E) and integers d; d0 with 1 � d0 < d �n, all-pairs rea
hability (or shortest paths)
orresponding to paths of length2 [d0; d℄,
an be maintained with optimal query time w.h.p. by maintaining awitness matrix M with respe
t to the set W (Sd0; d). It requires O(dd0mn lnn+n3 lnnd0) total update time for maintaining all-pairs rea
hability, whereas formaintaining all-pairs shortest paths the total update time required is O(dd0n3 lnn).4 De
remental algorithm for maintaining transitive
losureWe maintain all-pairs rea
hability
orresponding to short and long paths sep-arately. We
all the paths of lengths � d the short paths, and the paths oflength > d the long paths, where d will be �xed shortly. It follows that for apair of verti
es u; w 2 V , there is a path from u to w if and only if there isa short path or a long path from u to w. Therefore, for maintaining all-pairsrea
hability under deletion of edges it suÆ
es to solve the following two sub-problems.Maintaining rea
hability
orresponding to short paths : It follows13

from the des
ription given in se
tion 2 that out tree of depth d rooted at avertex u maintains the set of verti
es rea
hable within distan
e d from u. Theset of out trees of depth d from every vertex
an thus be used for maintainingall-pairs rea
hability
orresponding to short paths, and the total update timerequired is O(mnd). In future we shall refer to this data stru
ture by Sd0.Maintaining rea
hability
orresponding to long paths : Theorem 7shows that all-pairs rea
hability
orresponding to paths of length 2 [r; 2r℄
an be maintained by keeping a witness matrix M with respe
t to the setW (Sr; 2r). To maintain all-pairs rea
hability for paths of length 2 [d; n℄, wepartition the interval [d; n℄ into log2 nd sub-intervals : [d; 2d℄; � � � ; [2id; 2i+1d℄; � � �,[n=2; n℄. For ea
h sub-interval [2id; 2i+1d℄ starting from i = 0, we build andmaintain the set W (S2id; 2i+1d). It
an be seen that at any stage in the se-quen
e of edge-deletions, if there is a path of length � d from a vertex u toa vertex w, the set [i<log2 n=di=0 W (S2id; 2i+1d) has a witness of rea
hability fromu to w. Therefore, in order to maintain all-pairs rea
hability
orrespondingto long paths, it suÆ
es to maintain a witness matrix M with respe
t to theset [i<log2 n=di=0 W (S2id; 2i+1d). Now, using Theorem 7, the total update time formaintaining the witness matrix M with respe
t to this set will bei<log2 ndXi=0 mn lnn + n3 lnn2id ! = O mn ln2 n+ n3 lnnd !
We shall denote the above data stru
ture by Lnd . We maintain all-pairs rea
h-ability by keeping the data stru
tures Sd0 and Lnd simultaneously. Deleting anedge will require updating both the data stru
tures, and thus the total up-date time for maintaining all-pairs rea
hability (transitive
losure) over anysequen
e of edge-deletions will beO mnd+mn ln2 n+ n3 lnnd ! = O �mn ln2 n + n2pm lnn� for d = nplnnpmTheorem 8 Given a graph G(V;E), all-pairs rea
hability information
an bemaintained under deletion of edges by an algorithm that a
hieves O(1) querytime w.h.p. and O(n ln2 n + n2plnnpm) amortized update time per edge deletion.There are two previous algorithms for maintaining transitive
losure underdeletion of edges with O(1) query time. The �rst algorithm due to La Poutreand Van Leeuwen [18℄ a
hieves O(m) amortized update time while the se
ondalgorithm due to Demetres
u and Italiano [6℄ a
hieves O(n3m) amortized updatetime. These two algorithms together establish an upper bound of O(n 32) onthe update time. By suitably
ombining our algorithm with [18℄, we
an statethe following Corollary.Corollary 9 There exists a de
remental algorithm for maintaining transitive14

losure with O(n 43 3plnn) amortized update time and optimal query time w.h.p.5 De
remental algorithm for maintaining all-pairs approximate short-est pathsWe introdu
ed the terminologies of witness of rea
hability and witness of short-est path. In this se
tion, we introdu
e one more type of witness, namely awitness of approximate shortest path.Consider a pair of verti
es u; w 2 V su
h that the vertex u lies in in treeand the vertex w lies in out tree of depth d rooted at a vertex v. The pair(in tree,in tree)(v; d) not only a
ts as a witness of rea
hability from the ver-tex u to the vertex w, it also gives an upper bound (thus estimates) of 2don the distan
e from u to w. In other words, if Æ(u; w) is the distan
e fromvertex u to vertex w, the tree-pair (in tree,in tree)(v; d) a
ts as a witness of2dÆ(u;w) -approximate shortest-path from u to w.We present an eÆ
ient de
remental algorithm for maintaining all-pairs (1+�)-approximate shortest paths for any � > 0. The algorithm
an be visualizedas a
areful re�nement of the algorithm for maintaining all-pairs rea
habilitydes
ribed in the previous se
tion. The following lemma is the basis for main-taining witnesses of (1 + 2�)-approximate distan
es for all-pairs of verti
esseparated by distan
e 2 [d; d(1 + �)℄.Lemma 10 Given a sample S�d � V formed by pi
king ea
h vertex inde-pendently with probability lnn�d , the set W (S�d; (1=2 + �)d) has a witness of(1 + 2�)-approximate distan
e with probability 1 � 1=n, for a pair of verti
esseparated by distan
e 2 [d; d(1 + �)℄.PROOF. Let puw be a shortest-path from vertex u to vertex w of length2 [d; d(1 + �)℄ (see Figure 2). Let suw be the set of the verti
es lying onPSfrag repla
ements
u v wd �d(1 + �)d

< (12 + �)d puw
Fig. 2. a witness of (1=2 + �)-approximate shortest path from u to w is rooted at vthe path puw that are at distan
e � �d=2 from the mid-point of puw. Clearlyjsuwj = �d. It
an be observed that an in tree and an out tree of depth (1=2+�)drooted at any v 2 suw
aptures the path puw
ompletely, and thus establishesan upper bound of (1 + 2�)d on the distan
e from u to w. Sin
e the a
tual15

distan
e from u to w lies in the interval 2 [d; (1+ �)d℄, therefore, the tree-pair(in tree,out tree)(v; d) : v 2 suw is a witness of (1 + 2�)-approximate shortestpath from u to w.A sample S�d � V formed by pi
king ea
h vertex independently with proba-bility lnn�d has at-least one vertex from the set suw with probability � 1� 1=n.So the setW (S�d; (12+�)d) has a witness of (1+2�)-approximate distan
e for apair of verti
es separated by distan
e 2 [d; d(1 + �)℄ with probability > 1� 1n .It follows from Lemma 10 that in order to maintain (1 + 2�)-approximatedistan
es/shortest-paths for all-pairs of verti
es separated by distan
e 2 [d; (1+�)d℄, it suÆ
es if we maintain witness matrix for all-pairs rea
hability with re-spe
t to the witness setW (S�d; (12+�)d). So we
an state the following theoremalong the lines of Theorem 7.Theorem 11 Given a graph G(V;E) and d � n, all-pairs (1+2�)-approximateshortest paths for all-pairs of verti
es separated by distan
e 2 [d; (1+ �)d℄,
anbe maintained under edge-deletions with optimal query time w.h.p. by main-taining a witness matrix M for all-pairs rea
hability with respe
t to the setW (S�d; (12 + �)d). The total update time required over any sequen
e of edge-deletions is O(mn lnn� + n3 lnn�d).We use the idea of maintaining (1+�)-approximate shortest paths
orrespond-ing to short and long paths separately (also used for maintaining transitive
losure in the previous se
tion). We
all the paths of lengths � d the shortpaths, and the paths of length > d the long paths, where d will be determinedin the analysis.Maintaining (1+ �)-approximate shortest paths for vertex-pairs sep-arated by long paths:In order to maintain (1 + �)-approximate shortest paths for pair of verti
esseparated by distan
e 2 [d; n℄, we partition the interval [d; n℄ into ln1+� ndsub-intervals : f((1 + �)id; (1 + �)i+1d)ji < ln1+� ndg. For ea
h sub-interval[(1 + �)id; (1 + �)i+1d℄ starting from i = 0, we build and maintain the setsWi =W (S�(1+�)id; (1 + �)i(12 + �)d) and update the matrix M a

ordingly.Pro
essing of an edge deletion involves updating ea
h tree-pair, and sear
hingfor new witness for ea
h u; w 2 V if M [u; w℄
eases to be the witness due tothe re
ent edge deletion. Whenever sear
h for witness of rea
hability from uto w fails in list Wi, we start sear
h in next list Wi+1. Thus the followinginvariant (along the lines of I �) will be maintained for ea
h u; w 2 V .I R : At any time if sets Wi1 ;Wi2; � � � ;Wik : i1 < i2 � � � < ik are the only setsthat have witnesses of rea
hability from u to w, then M [u; w℄ will point to the�rst witness of rea
hability (from u to w) in the list Wi116

Let the length of the shortest-path from vertex u to vertex w lies in inter-val ((1 + �)jd; (1 + �)j+1d). Lemma 10 ensures that the list Wj must havea tree-pair whi
h is a witness of (1 + 2�)-approximate shortest path from uto w, and the invariant I R implies that M [u; w℄ will point to this tree-pair.In other words, the rea
hability-witness matrix M with respe
t to the set[i<ln1+� n=di=0 Wi maintains witnesses of (1 + 2�)-approximate shortest path forea
h pair (u; w) separated by distan
e 2 [d; n℄. Using Theorem 11, the totalupdate time required for maintaining the witness matrixM over any sequen
eof edge-deletions will bei<ln1+� ndXi=0 mn lnn� + n3 lnn(1 + �)i�d! = O mn lnn�2 + n3 lnn�2d !
So the amortized update time per edge deletion required for maintaining (1+�)-approximate shortest paths for all-pairs of verti
es separated by long pathsis O(n lnn�2 + n3 lnn�2dm).Maintaining shortest paths for vertex-pairs separated by short paths: We maintain out tree of depth d from ea
h vertex to report exa
t distan
ebetween any pair of verti
es separated by short paths. The amortized updatetime per edge deletion is O(nd)Balan
ing the update bounds for maintaining all-pairs (1 + �)-approximateshortest path for long and short paths, we get d = nplnn�pm . Hen
e the amortizedupdate time per edge deletion for maintaining (1 + �)-approximate shortestpaths will be O(n lnn�2 + n2plnn�pm).Theorem 12 Given an unweighted graph G(V;E), there exists a data stru
-ture for maintaining all-pairs (1+ �)-approximate shortest paths/distan
e withoptimal query time w.h.p. and O(n lnn�2 + n2plnn�pm) amortized update time peredge-deletion.King [16℄ gave a fully dynami
 algorithm for maintaining all-pairs (1 + �)approximate shortest paths that require O(n2 ln3 n�2) update time per edge dele-tion. For updates
onsisting of edge deletions only, our algorithm improves theupdate time by a fa
tor of O(pm ln5 n�).6 De
remental algorithm for maintaining all-pairs distan
es andall-pairs shortest pathsWe maintain all-pairs shortest paths/distan
es by keeping a witness of shortestpath (if exists) for ea
h vertex-pair. It follows from Theorem 7 that for main-17

taining shortest paths for all-pairs of verti
es separated by distan
e 2 [r; 2r℄,it suÆ
es to maintain a matrix of shortest-path witnesses with respe
t tothe set W (Sr; 2r). In order to maintain shortest paths for all-pairs of ver-ti
es (irrespe
tive of the distan
e), we build and maintain W (Sr; 2r) for ea
hr 2 f1; 2; 4; � � � ; 2i; � � � ; n=2g. It follows from subse
tion 3.2 that with respe
tto the set [i<log2 ni=0 W (S2i ; 2i+1), an entry M [u; w℄ gets initialized to a witnessof the shortest path from u to w for all u; w 2 V in total time O(n3).Pro
essing of an edge deletion involves updating ea
h tree-pair and sear
hingfor new shortest-path witness for ea
h pair u; w 2 V if path length from u to wpassing through M [u; w℄ has in
reased due to the re
ent edge deletion. Whilesear
hing for a witness of path length r from u to w, we will
on�ne our sear
hwithin the list W (S2i; 2i+1) for 2i < r � 2i+1. Whenever sear
h for witnessof path of length 2i+1 fails in the list W (S2i; 2i+1), we move onto the nextlist W (S2i+1; 2i+2). We pro
eed in this way for vertex-pair (u; w) performingO(n lnn) work per witness list (s
anning list of length n2i lnn, for 2i times).Sin
e there are now log2 n lists and a total of n2 vertex-pairs, the total update
ost will be O(n3 ln2 n) over any sequen
e of edge deletions. We
an thus statethe following theorem.Theorem 13 Given an unweighted graph G(V;E), there exists a data stru
-ture for maintaining all-pairs shortest distan
es in O(n3 ln2 nm) amortized updatetime per edge-deletion and taking O(1) time to answer a distan
e query w.h.p.Remark : Demetres
u and Italiano [7℄ designed an O(n3m ln3 n) update timealgorithm for maintaining all-pairs shortest paths under deletion of edges.Their algorithms a
hieves O(1) query time w.h.p. and improves the previousO(n2) update time of King [16℄ for dense graphs. Our algorithm improves theupdate time further by a fa
tor of O(lnn).For initial
omplete graph, the new algorithm a
hieves O(n ln2 n) amortizedupdate time. But for sparse graphs the update time may be �(n2). So thereis still no de
remental algorithm for maintaining all-pairs shortest distan
esthat a
hieves sub-quadrati
 update time for all graphs and takes O(1) time toanswer distan
e query. However, for the
ase of shortest path reporting prob-lem, we are able to design a de
remental algorithm that requires O(n 32plnn)update time for any graph and answers any query in optimal time. The im-provement is a
hieved by
ombining the
on
ept of �ltering sear
h [2℄ withthe data stru
tures Sd0, Lnd in a novel way as follows.Consider any two verti
es u and w in a graph G(V;E) under deletion of edges.Suppose we re
eive a query \report distan
e from u to w" at an instan
e.Let w be rea
hable from u at that instan
e. If the shortest path from u tow is of length luw � d, we are able to answer the query in O(1) time using18

out tree(u; d) of the data-stru
ture Sd0. Otherwise 2id < luw � 2i+1d holds forsome 0 � i < log2 nd . Note that w.h.p. the set W (S2id; 2i+1d) has a witness ofthe shortest path from u to w. But �nding the witness may require O(jS2idj)time (not
onstant !) sin
e it takes O(1) time to �nd the length of the pathfrom u to w lying in a tree-pair 2 W (S2id; 2i+1d). This for
ed us to maintain amatrix of all-pairs shortest-path witnesses so that we
an answer any distan
ereporting query in
onstant time. However, for a shortest-path reporting query,we must in any
ase spend O(luw) time to report all the edges on the shortestpath. Therefore, if we spend additional O(luw) time to �nd the shortest pathwitness, we will still be a
hieving O(luw) query time for shortest path report-ing, whi
h is optimal. (This is indeed the idea of �ltering sear
h [2℄). Now tomaterialize this idea, we need to ensure that whenever the shortest-path tobe reported lies in the interval [d; n℄, the number of witnesses to be sear
hedfor �nding the shortest path should be O(d). In other words, the followinginequality must hold :jS2idj < d for all 0 � i < log2 n=dSin
e jS2idj = n2id lnn, therefore, pn lnn is the right
hoi
e for d. Note thatthe total number of witnesses in Lnd will be O(pn lnn) for this value of d.Using the data stru
tures Sd0 and Lnd for d = pn lnn, we
an pro
ess anyshortest-path reporting query (say, from u to w) in optimal time as follows :First inquire if w is present in the out tree rooted at u. This operation takes
onstant time. If the answer is yes, we
an report the shortest path using theout tree rooted at u; otherwise inquire if w is rea
hable from u or not, usingthe witness matrix M of the data-stru
ture Lnd . If M [u; w℄ is pointing to null,we report in O(1) time that there is no path from u to w. Otherwise, it
an be
on
luded that the shortest path length luw 2 [pn lnn+1; n�1℄. In this
ase, atleast one of the vertex of the shortest path from u to w must be present w.h.p.in the sampled set of witnesses. We sear
h the entire set of witnesses to �ndthe witness of shortest path. The size of the witness set being O(pn lnn), we
an thus �nd the witness of the shortest path from u to w in O(pn lnn) timeand then report the shortest path from u to w passing through it in additionalO(luw) time. Sin
e luw > pn lnn, the total time taken for pro
essing a shortestpath reporting query is O(luw) (and hen
e optimal).The amortized update time per edge deletion for the two data stru
tures Sd0and Lnd will beO nd+ n3md lnn! = O �n 32plnn� for d = pn lnnTheorem 14 An unweighted graph G(V;E)
an be prepro
essed to build adata stru
ture that answers any on-line shortest path reporting query in op-timal time w.h.p. while ensuring O(min(n 32plnn; n3 ln2 nm)) amortized updatetime per edge-deletion. 19

7 Spa
e Requirement of our AlgorithmsIt
an be seen that all the algorithms given in this paper employ a witnessmatrix M and O(n) number of in trees and out trees. The matrix M
learlyo

upies �(n2) spa
e. Although the earlier s
heme given in [16℄ requires �(m)spa
e for maintaining an in tree (or an out tree), it has been improved to O(n)by King and Thorup [17℄. Thus the total spa
e requirement for maintainingO(n) number of in trees or out trees is O(n2). Hen
e the spa
e requirement ofall the algorithms given in this paper is O(n2).
8 Con
lusion and Open ProblemsIn this paper, we presented improved de
remental algorithms for maintainingtransitive
losure and all-pairs exa
t/approximate shortest paths with optimalquery time. The key
on
ept underlying our algorithms has been the impli
its
heme for maintaining rea
hability/shortest-path information. Later we alsouse this s
heme along with a new hierar
hi
al distan
e reporting s
heme inpaper [1℄ for the problem of maintaining all-pairs approximate shortest pathsin undire
ted unweighted graphs under deletion of edges. We show that it ispossible to a
hieve O(n1+Æ) bound (for arbitrarily small � > 0) on amortizedupdate
ost at the expense of in
reased approximation fa
tor of the distan
ereported.There have been new developments in the �eld of dynami
 graph algorithmsever sin
e we submitted this paper. For the problem of all-pairs rea
habil-ity under edge-deletions, Roditty and Zwi
k [19℄ design an algorithm thatrequires O(n) amortized update
ost, and thus improves our bounds for all-pairs rea
hability problem. For fully dynami
 maintenan
e of all-pairs shortestpath, Demetres
u and Italiano [8℄ present an algorithm that a
hieves O(n2)amortized
ost per update whi
h is superior to the previous O(n2:5) bounda
hieved by King [16℄. Note that for all-pairs approximate shortest paths inundire
ted graphs, there are stati
 algorithms [3,9℄ that require O(n2 lnn)time. In these
ases, the fully-dynami
 algorithm of [8℄ provides only logarith-mi
 improvement. Therefore, it is desirable to design a fully dynami
 algorithmfor maintaining all-pairs approximate shortest paths with o(n2) update time,possibly at the expense of in
reased query time.20

9 A
knowledgmentsWe sin
erely thank Camil Demetres
u for providing a very helpful
lari�
ationabout the paper [6℄. We also thank L. Sunil Chandran and L. Shankar Ramfor their valuable suggestions and
omments on an earlier draft of this paper.Referen
es[1℄ S. Baswana, R. Hariharan, and S. Sen. Maintaining all-pairs approximateshortest paths under deletion of edges. In Pro
eedings of the 14th Annual ACM-SIAM Symposium on Dis
rete A lgorithms (SODA), pages 394{403, 2003.[2℄ B. Chazelle. Filtering sear
h : A new approa
h to query-answering. SIAM J.Comput., 15:703{724, 1986.[3℄ E. Cohen and U. Zwi
k. All-pairs small stret
h paths. Journal of Algorithms,38:335{353, 2001.[4℄ D. Coppersmith and S. Winograd. Matrix multipli
ation via arithmeti
progressions. Journal of Symboli
 Computation, 9:251{280, 1990.[5℄ C. Demetres
u. Personal
ommuni
ation.[6℄ C. Demetres
u and G. Italiano. Fully dynami
 transitive
losure : Breakingthrough the o(n2) barrier. In Pro
eedings of the 41st Annual Symposium onFoundations of Computer S
ien
e (FOCS), pages 381{389, 2000.[7℄ C. Demetres
u and G. Italiano. Fully dynami
 all pairs shortest paths with realedge weights. In Pro
eedings of the 42nd Annual Symposium on Foundationsof Computer S
ien
e (FOCS), pages 260{267, 2001.[8℄ C. Demetres
u and G. Italiano. A new approa
h to dynami
 all-pairs shortestpaths. In Pro
eedings of the 35th Annual ACM Symposium on Theory ofComputing (STOC), pages 159{166, 2003.[9℄ D. Dor, S. Halperin, and U. Zwi
k. All pairs almost shortest paths. SiamJournal on Computing, 29:1740{1759, 2000.[10℄ S. Even and Y. Shiloa
h. An on-line edge-deletion problem. Journal ofasso
iation for
omputing ma
hinery, 28:1{4, 1981.[11℄ R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Gar
ia-Molina.Proximity sear
hes in databases. In Pro
eedings of the 24th VLDB Conferen
e,pages 26{37, 1998.[12℄ D. Greene and D. Knuth. Mathemati
s for the analysis of algorithms.Birkhauser, Boston, 1982. 21

[13℄ M. R. Henzinger and V. King. Fully dynami
 bi-
onne
tivity and transitive
losure. In Pro
eedings of the 36th Annual Symposium on Foundations ofComputer S
ien
e (FOCS), pages 664{672, 1995.[14℄ N. Horspool. In
remental generation of LR parsers. Computer Languages,15:205{223, 1990.[15℄ H. V. Jagadish. A
ompression te
hnique to materialize transitive
losure. ACMTransa
tion on Database Systems (TODS), 15:558{598, 1990.[16℄ V. King. Fully dynami
 algorithms for maintaining all-pairs shortest paths andtransitive
losure in digraphs. In Pro
eedings of the 40th Annual Symposiumon Foundations of Computer S
ien
e (FOCS), pages 325{334, 1999.[17℄ V. King and M. Thorup. A spa
e saving tri
k for dire
ted dynami
 transitive
losure and shortest path algorithms. In Pro
eedings of 7th InternationalComputing and Combinatori
s Conferen
e, COCOON, volume 2108 of LNCS,pages 268{277. Springer Verlag, 2001.[18℄ H. L. Poutre and J. V. Leeuwen. Maintenan
e of transitive
losure and transitiveredu
tion of a graph. In Pro
eedings of Workshop on Graph-Theoreti
 Con
eptsin Computer S
ien
e, volume 314 of LNCS, pages 106{120. Springer Verlag,1988.[19℄ L. Roditty and U. Zwi
k. Improved dynami
 rea
hability algorithms for dire
tedgraphs. In Pro
eedings of the 43rd Annual Symposium on Foundations ofComputer S
ien
e (FOCS), pages 679{688, 2002.[20℄ U. Zwi
k. All-pairs shortest paths in weighted dire
ted graphs - exa
t andalmost exa
t algorithms. In Pro
eedings of the 39th Annual Symposium onFoundations of Computer S
ien
e (FOCS), pages 310{319, 1998.

22

