
Improved Deremental Algorithms forMaintaining Transitive Closure and All-PairsShortest Paths ?
Surender Baswana a;�;1 Ramesh Hariharan b Sandeep Sen a;2aDept. of Comp. S. and Engg., Indian Institute of Tehnology Delhi, New Delhi,IndiabDept. of Comp. S. and Automation, Indian Institute of Siene, Bangalore,India

AbstratThis paper presents improved algorithms for the following problem : Given an un-weighted direted graphG(V;E) and a sequene of on-line shortest-path/reahabilityqueries interspersed with edge-deletions, develop a data-struture that an answereah query in optimal time, and an be updated eÆiently after eah edge-deletion.The entral idea underlying our algorithms is a sheme for impliitly storing all-pairs reahability/shortest-path information, and an eÆient way to maintain thisinformation.Our algorithms are randomized and have one-sided inverse polynomial error forquery.Key words: BFS tree, dynami, graph, transitive losure, shortest paths
? Preliminary version of this paper appeared in 34th ACM Symposium on Theoryof Computing (STOC), May 19-21, 2002, Montreal,Quebe, Canada.� Corresponding author.Email addresses: sbaswana�se.iitd.ernet.in (Surender Baswana ),ramesh�sa.iis.ernet.in (Ramesh Hariharan), ssen�se.iitd.ernet.in(Sandeep Sen ).1 Work was supported in part by a PhD fellowship from Infosys Tehnologies Ltd.,Bangalore.2 Work was supported in part by an IBM UPP awardPreprint submitted to Journal of Algorithms 9 September 2004



1 IntrodutionThe following two problems are among the most fundamental algorithmigraph problems :� Transitive Closure : Proess a given direted graph 3 G(V;E) so thatany query of the form, \Is there a path from u to v in the graph?", an beanswered eÆiently.� All-Pairs Shortest Paths Problem : Proess a given unweighted graphG(V;E) so that any query of the form, \Report the shortest path (or dis-tane) from vertex u to a vertex v?", an be answered eÆiently.There exist lassial algorithms that take O(mn) time for the two problemsso that any query an be answered in O(1) time. There also exist algorithmsbased on fast matrix multipliation that require sub-ubi time for the twoproblems. In partiular, using the fastest known matrix multipliation algo-rithms (Coppersmith and Winograd [4℄), the best bound on omputing tran-sitive losure is O(n2:376), whereas for the all-pairs shortest paths problem, itis O(n2:575) [20℄.There are many appliations in ommuniation networks, inremental parsergeneration [14℄ and relational databases augmented with transitive losure[15,11℄ that require eÆient solutions of the above problems for a dynamigraph. In a dynami graph problem, an initial graph is given, followed by ansequene of on-line queries interspersed with updates whih an be insertionor deletion of edges. We have to arry out the updates and answer the querieson-line in an eÆient manner. Eah query has to be answered with respetto the present state of the graph, i.e., inorporating all the updates preedingthe query. One trivial way to solve suh a dynami graph problem is thatwe run the stati graph algorithm after every update. The goal of a dynamigraph algorithm is to update the solution eÆiently after the dynami hanges,rather than having to re-ompute it from srath eah time.For every stati graph problem, there exists its dynami ounterpart. We anlassify dynami graph problems aording to the types of updates allowed.A problem is said to be fully dynami if the update operations inlude bothinsertions and deletions of edges. A problem is alled partially dynami if onlyone type of update, either insertion or deletions, is allowed. If only insertionsare allowed, the problem is alled inremental; if only deletions are allowed, itis alled deremental.We present eÆient deremental algorithms for maintaining all-pairs shortest-paths and transitive losure in an unweighted graph. The query algorithms3 In this paper graphs will imply direted graphs2



are Monte-Carlo with one sided error (the probability of error being inversepolynomial).1.1 Previous work and our ontributionTransitive Closure :La Poutre and Van Leeuwen [18℄ gave a deremental algorithm for maintain-ing transitive losure with O(m) amortized update time per edge deletionand answering eah query in O(1) time. Demetresu and Italiano [6℄ gave aderemental algorithm for the problem that requires O(n3=m) amortized up-date time whih is better for dense graphs. For an initial omplete graph,the algorithm ahieves O(n) amortized update time per edge deletion [5℄, butfor sparse graphs, the update time an be even �(n2). It an be seen that aombination of these two algorithms yields an upper bound of O(n 32 ) on theupdate time while keeping O(1) query time. Henzinger and King [13℄ gave aderemental randomized algorithm that ahieves O(n ln2 n) amortized updatetime but at the expense of inreased query time of O( nlnn). The query has onesided inverse polynomial error, i.e., the answer to any query may be inorretin the sense that it may not report a path when there exists one. However,the probability of an error an be made smaller than 1n for arbitrary  > 0.Subsequently we will use the aronym w.h.p. to denote probability exeeding1� 1n for any  > 0.In this paper, we present an eÆient algorithm that ahieves O(1) query timew.h.p. and requires O(n ln2 n + n2pm lnn) amortized update time per edge-deletion. Our algorithm ahieves an improvement in the update time om-pared to the deterministi algorithms while ensuring O(1) query time. Bysuitably ombining with [18℄, our algorithm ahieves an improved upper boundof O(n 43 3plnn) on amortized update time per edge deletion for the problem ofmaintaining transitive losure with optimal query time.All-pairs shortest paths :Demetresu and Italiano [7℄ gave a deremental algorithm for maintaining all-pairs shortest paths under deletion of edges that ahieves O(n3m ln3 n) amor-tized update time while ahieving optimal query time w.h.p. Their algorithmimproves the previous O(n2) update time of [16℄ for dense graphs.We present two deremental algorithms for the all-pairs shortest paths prob-lem. For distane reporting problem, we give a simpler ombinatorial algo-rithm that requires O(n3m ln2 n) amortized update time while ahieving O(1)query time. For the shortest path reporting problem (i.e. the atual sequeneof edges), we use the idea of �ltering searh in a novel way to design an al-3



Maintaining All-Pairs ReahabilityPrevious ImprovedQuery Update Time Update TimeIs v reahable from u ?report a path from u to v O �n 32� O �n 43 3plnn�Maintaining All-Pairs (1 + �)-Approximate Shortest PathsPrevious ImprovedQuery Update Time Update Timereport (1 + �)-approx. distanereport (1 + �)-approx. shortest path none O �n lnn�2 + n2plnn�pm �Maintaining All-Pairs Shortest PathsPrevious ImprovedQuery Update Time Update Timereport the distane from u to v O �n3m ln3 n� O �n3m ln2 n�report the shortest path from u to v O(n3m ln3 n) min8><>:O(n 32plnn);O(n3m ln2 n)Table 1All the update bounds (old and new) are amortized. Throughout this paper, ourquery times are optimal but there is one sided inverse polynomial error in the query-answer.gorithm that ahieves O(min(n 32plnn; n3m ln2 n)) update time while ahievingoptimal query time. Hene we redue the upper bound on the worst aseamortized update time for the problem of maintaining all-pairs shortest pathsunder deletion of edges by a fator of O(q nlnn).Next, we present an eÆient deremental algorithm that o�ers a trade-o� be-tween update time and approximation fator of the shortest path. For main-taining all-pairs (1 + �)-approximate shortest paths, our algorithm ahievesO(n lnn�2 + n2plnn�pm ) amortized update time per edge-deletion for arbitrarily small� > 0. We summarize our results in Table 1.It may be noted that our algorithms are simple to implement and do not makeuse of any sophistiated matrix multipliation algorithms. We show that thespae requirement of our data strutures is O(n2).4



2 Overview of our algorithms2.1 NotationsGiven an unweighted graph G(V;E), v 2 V , and a positive integer d, we de�nethe following notations that will be used in the remaining paper.� out tree(v) : a omplete breadth-�rst-searh (BFS) tree rooted at the vertexv in the graph G(V;E).� in tree(v) : a omplete BFS tree rooted at the vertex v in the graph formedby reversing all the edge-diretions in G(V;E).� out tree(v; d) : a BFS tree of depth d rooted at the vertex v in the graphG(V;E).� in tree(v; d) : a BFS tree of depth d rooted at the vertex v in the graphformed by reversing all the edge-diretions in G(V;E).� (in tree,out tree)(v; d) : a pair of in tree(v; d) and out tree(v; d).� W (S; d) : f(in tree,out tree)(v; d) jv 2 S g, for a given S � V .� Sr : A random set of verties formed by piking eah vertex randomly in-dependently with probability lnnr . The expeted size of the set Sr is n lnnr .With a BFS tree, we also keep an auxiliary array to determine in onstanttime whether a vertex belongs to the tree or not. In addition, for eah vertexthat belongs to the tree we keep information about its level (its distane fromthe root) and its parent in the tree. With all this information that we main-tain in a BFS tree, it an be seen that in addition to maintaining reahabilityinformation from v, the tree out tree(v; d) an also serve the purpose of main-taining the distane/shortest-path information to all the verties lying withindistane d from v. In the same way, in tree(v; d) an be used for maintainingreahability information as well as the shortest path to v from all the vertiesfor whom v lies within distane d.While edges are being deleted in a graph, the levels of verties in a BFS treemay inrease. Thus maintaining a BFS tree of depth d, after an edge deletion,involves �nding the set of verties whose level has inreased, eliminating thosefrom this set whose level has fallen beyond d, and assigning the rest of theverties (with level � d still) to their new levels.The best known algorithm for maintaining an in tree or an out tree is givenby Henzinger and King [13℄ along the lines of [10℄.Lemma 1 [13℄ Given an unweighted graph G(V;E), a vertex v 2 V and apositive integer d, an in tree(v; d) (or an out tree(v; d)) an be maintained inO(d) amortized update time per edge deletion.5



2.2 Main IdeaThe simplest way of maintaining all-pairs reahability (shortest paths) in anunweighted graph is to maintain an out tree up to depth n from eah vertex.It follows from Lemma 1 that the amortized update time required by thisapproah (maintaining n out trees of depth n) will be O(n2) per edge deletion.In order to develop eÆient deremental algorithm for transitive losure andall-pairs shortest paths, we explore alternate shemes of maintaining all-pairsreahability and shortest paths. In this endeavor, we present shemes thatmaintains reahability and exat (or approximate) shortest path informationimpliitly.Consider a pair of verties u; w 2 V suh that there is a path from vertex u tow, and let v be any intermediate vertex on the path. It an be seen that the ver-tex u belongs to in tree rooted at v, and the vertex w belongs to out tree rootedat v. Thus ombined together in tree, out tree rooted at v stores the path fromu to w impliitly (the omplete path and its length an be retrieved by query-ing in tree(v) and out tree(v)). In other words, the pair (in tree(v),out tree(v))ats as a witness of reahability from u to w. Analogously if the vertex v lieson the shortest path from u to w, the pair (in tree(v),out tree(v)) pair ats asa witness of shortest path from u to w.The above mentioned sheme of keeping reahability (shortest path) informa-tion impliitly suggests that in order to maintain all-pairs reahability (short-est paths) under deletion of edges, it suÆes to maintain a witness (if oneexists) of reahability (shortest path) for eah vertex-pair (u; w). In the fol-lowing setion, we design eÆient algorithms for maintaining witnesses of all-pairs reahability and shortest paths orresponding to paths of length in aninterval [d0; d℄ for any 1 � d0 < d � n. These algorithms form the basis fordeveloping eÆient deremental algorithms for the main problems as follows.Maintaining transitive losure : The sheme of maintaining reahabilityimpliitly (by keeping witnesses) proves to be eÆient for maintaining all-pairs reahability orresponding to long paths. On the other hand, the shemeof maintaining reahability expliitly (by keeping out tree from every vertex)proves to be eÆient for maintaining reahability orresponding to short paths.We ombine the two strategies together to ahieve improved update time ofO(n ln2 n + n2pmplnn) per edge deletion.Maintaining all-pairs approximate shortest paths : Analogous to wit-ness of reahability and shortest paths, we propose the terminology of wit-ness of approximate shortest paths. It turns out that our data struture formaintaining transitive losure an be suitably adapted to maintain all-pairs6



(1 + �)-approximate shortest paths 4 in unweighted graphs.Maintaining all-pairs exat shortest paths : For the problem of main-taining all-pairs shortest distanes, the strategy of maintaining witness ofshortest path for every vertex-pair leads to ahieving O(n3m ln2 n) update time.For the ase when query is to report the shortest path, we use the idea of �lter-ing searh [2℄ to redue the update time further to O(min(n 32plnn; n3m ln2 n))whih is bounded by O(n 32plnn) for all graphs.3 Maintaining witnesses of reahability/shortest-paths for all-pairsof verties separated by distane 2 [d0;d℄In this setion we design eÆient algorithms for maintaining reahability andshortest paths for all the vertex-pairs (u; w) suh that there is a path fromu to w of length 2 [d0; d℄. For the reahability problem, the algorithm willmaintain a witness of reahability for every vertex-pair (u; w) if there is pathof length 2 [d0; d℄ from u to w. For the all-pairs shortest path problem, thealgorithm will maintain a witness of the shortest path for every vertex-pair(u; w) among all paths from u to w of length 2 [d0; d℄.Let S � V , and let W (S; d) be the set of pairs of in tree and out tree ofdepth d rooted at eah vertex of the set S (see the notations de�ned in setion2.1). We begin with the design of eÆient algorithms for maintaining all-pairs reahability and shortest paths with tree-pairs from the set W (S; d) aswitnesses, i.e., the paths to be onsidered for reahability (shortest-path) areonly those paths that are aptured by the tree-pairs of the set W (S; d). Thealgorithm an be used for maintaining reahability (shortest paths) for all-pairs of verties separated by distane 2 [d0; d℄, if we hoose S = V . It turns outthat the update time of the algorithm is diretly proportional to the size of thewitness set. Subsequently, to improve the update time, we redue the numberof witnesses, i.e. jSj by using random sampling. This observation was exploitedby Henzinger and King [13℄ for designing a deremental algorithm to maintainall-pairs reahability with O(n ln2 n) update time at the expense of O( nlnn)query time. We extend this approah to its full potential for maintaining all-pairs shortest paths and transitive losure with optimal query time.3.1 Maintaining all-pairs reahability with respet to a witness setLet W (S; d)=f(in tree, out tree)(v; d)jv 2 Sg be the set of witnesses kept in alist, also denoted by W (S; d). Let u; w be any two verties in the graph. If u4 Path with length at most (1 + �) times the length of the shortest path7



and w lie respetively in in tree(v; d) and out tree(v; d) for some vertex v 2 S,then (in tree,out tree)(v; d) is a witness of reahability from u to w. Findingout if there is any witness in the set W (S; d) for reahability from u to w willrequire querying eah (in tree,out tree)(v; d) 2 W (S; d). Thus the query timewill be O(jSj). In order to ahieve O(1) query time, we maintain a witnessmatrix M . For eah pair (u; w), at every stage M [u; w℄ points to some vertexv 2 S if (in tree,out tree)(v; d) is a witness of reahability from u to w.We initialize the matrixM as follows : The matrixM has all entries pointing tonull initially. For every (in tree,out tree)(v; d)2 W (S; d), we do the following.For eah u 2 in tree(v; d) and for every w 2 out tree(v; d), we update M [u; w℄to point to v if it was pointing to null previously. Thus it requires O(n2) timeper tree-pair from the set W (S; d) to initialize the witness matrix M .Lemma 2 Given a graph G(V;E), a set of tree pairs W (S; d) for a set S � Vand a positive integer d, it takes O(n2jSj) time to initialize matrix M forstoring witnesses of reahability for all-pairs of verties with respet to the setW (S; d).Notie that as the edges are being deleted, a tree-pair (in tree,out tree)(v; d)2W (S; d) may ease to be a witness of reahability for a vertex-pair (u; w). Thishappens when either u eases to belong to in tree(v; d) or the vertex w easesto belong to out tree(v; d). We now desribe an algorithm for updating theentries of matrix M after an edge deletion.Updating matrix M for witnesses of reahability :We perform the following three operations after deletion of an edge.(1) Updating the BFS trees of the set W (S; d) :For eah v 2 S, we update in tree(v; d) and out tree(v; d) for the edgedeletion.(2) Finding the pairs of verties whose witness of reahability has expired :Let (in tree,out tree)(v; d) be a tree-pair from the set W (S; d), and letX and Y be the set of verties that ease to belong to in tree(v; d) andout tree(v; d) respetively. (These sets are already omputed in step 1.)We proess the set X as follows (the set Y is proessed in a similarfashion). For every u 2 X, we �nd the set su of verties suh thatM [u; w℄is v for eah w 2 su. By inspeting the row M [u; ℄ it requires O(n) timeper u 2 X to �nd su. It an be seen that (in tree,out tree)(v; d)2W (S; d)has eased to be a witness of reahability from u to eah w 2 su.By proessing eah tree-pair in the manner desriber above, we anompute all-pairs of verties whose urrent witness of reahability in Mhas expired.(3) Searhing for a new witness of reahability :Let (u; w) be a pair of verties whose urrent witness of reahability, say8
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Fig. 1. The searh for a new witness of reahability from u to w when(in tree,out tree)(v; d) eases to be the witness.(in tree,out tree)(v; d) has expired due the reent edge-deletion. We searhthe listW (S; d) starting from the tree-pair following (in tree,out tree)(v; d),and �nd a witness of reahability from u to w (spending O(1) time pertree-pair in W (S; d)). If we reah the end of the list W (S; d), we updateM [u; w℄ to point to null, otherwise we update M [u; w℄ to point to theroot of the new witness found.The following invariant is maintained throughout the series of edge deletions.I � : M [u; w℄ points to the �rst tree-pair in the list W (S; d) that is a witness ofreahability from u to w.The invariant holds just after the initialization of M . It an be easily veri�edthat the proedure desribed above preserves the invariant after eah edgedeletion. By indution on the number of edge deletions, we an onlude thatthe invariant I � always holds.Cost Analysis : As mentioned in Lemma 2, the total ost of initializing thewitness matrix M is O(n2jSj). We now assess the total ost inurred in thethree kinds of operations that we perform to maintain matrix M .The �rst operation deals with updating eah tree-pair under edge deletion.It requires O(d) amortized ost per edge deletion for maintaining the in treeand out tree of depth d rooted at a vertex. Hene the total ost of maintainingtree-pairs of set W (S; d) will be O(mdjSj) over any sequene of edge deletions.Now onsider the seond operation that omputes the pairs of vertieswhose witness of reahability has expired after an edge deletion. It followsfrom the desription given above that for a tree-pair (in tree,out tree)(v; d)2W (S; d), we inur O(n) ost per vertex when the vertex eases to belong toin tree(v; d) (or out tree(v; d)). Hene the total ost inurred in seond opera-tion is O(n2jSj) over any sequene of edge deletions.To assess the total ost inurred in the third operation, that is, searhingfor a new witness of reahability, note that we onsider a tree-pair from the9



list W (S; d) exatly one for being a witness of reahability for a pair (u; w).This is beause one a tree-pair (in tree,out tree)(v; d) eases to be a witnessof reahability from u to w, it an never beome a witness of reahability fromu to w in future. Hene the total ost inurred in searhing for new witnesseswill be O(n2jSj) over the entire sequene of edge-deletions.Summing up the ost of all operations, we onlude that the total ost inurredin maintaining all-pairs reahability over any sequene of edge deletions isO(mdjSj+ n2jSj).Theorem 3 Given a graph G(V;E), a set of tree-pairs W (S; d) for a set S �V and a positive integer d, all-pairs reahability with respet to the witnessesW (S; d) an be maintained under edge-deletions with O(1) query time andO((md+ n2)jSj) total update time.3.2 Maintaining all-pairs shortest paths with respet to a witness setThe algorithm we desribe is analogous to the algorithm desribed in theprevious subsetion. Let W (S; d)=f(in tree, out tree)(v; d)jv 2 Sg be the setof witnesses kept in a list, also denoted by W (S; d). We maintain a witnessmatrix M suh that for eah u; w 2 V , M [u; w℄ points to the �rst tree-pairin the list W (S; d) whih is a witness of the shortest path among all pathsfrom u to w aptured by the tree-pairs from the set W (S; d). The matrixM isinitialized as follows. The matrix M has all entries pointing to null initially.For every (in tree,out tree)(v; d)2 W (S; d), we do the following. For eah u 2in tree(v; d) and for every w 2 out tree(v; d), we updateM [u; w℄ to point to v ifit is pointing to null or if the tree-pair assoiated with the existing M [u; w℄ isa witness of a path from u to w with longer length than the tree-pair (in tree,out tree)(v; d). It follows easily that it requires O(n2) time per element of theset W (S; d) to initialize the matrix.Lemma 4 Given a graph G(V;E), a set of tree pairs W (S; d) for a set S � Vand a positive integer d, it takes O(n2jSj) time to initialize matrix M forstoring witnesses of shortest paths for all-pairs of verties with respet to theset W (S; d).For any pair of verties u; w 2 V , let M [u; w℄ = v after the initializationof the matrix M . Notie that as the edges are being deleted, the tree-pair(in tree,out tree)(v; d)2 W (S; d) may ease to be a witness of the shortestpath for the vertex-pair (u; w). This happens when either u inreases its levelin in tree(v; d) or the vertex w inreases its level in out tree(v; d). We nowdesribe an algorithm for updating the entries of M after an edge deletion.10



Updating matrix M for witnesses of shortest paths : We perform thefollowing three operations after deletion of an edge.(1) Updating the BFS trees of the set W (S; d) :For eah v 2 S, we update in tree(v; d) and out tree(v; d) for the edgedeletion.(2) Finding the pairs of verties whose witness of shortest path has to beupdated :Let (in tree,out tree)(v; d) be a tree-pair from the set W (S; d), and let Xand Y be the sets of verties whose level has inreased in in tree(v; d)and out tree(v; d) respetively. We proess the set X as follows (the setY is proessed in a similar fashion). We san row M [u; ℄ for eah u 2 Xto ompute all those verties w 2 V suh that M [u; w℄ = v. It an beseen that the length of the shortest path from u to w passing through vhas inreased. As a result, we an not be sure that (in tree,out tree)(v; d)would still be a witness of shortest path from u to w. This is beause theremight be some other tree-pair in the set W (S; d) that ould be a witnessof a path from u to w with length less than that of the new path fromu to w passing through v. So we need to �nd a new witness of shortestpath from u to w.By proessing eah tree-pair in the manner desriber above, we anompute all-pairs of verties whose urrent witness of shortest path hasto be updated in M .(3) Searhing for a new witness of shortest path : Let (u; w) be a pair ofverties suh that a new witness of shortest path from u to w has to besearhed for due to the reent edge-deletion (as mentioned in the seondoperation mentioned above). Let (in tree,out tree)(v; d) be the witness ofshortest path (of length say r) from u to w prior to the edge deletion.We san the list W (S; d) starting from the suessor of the tree-pair(in tree,out tree)(v; d) in searh for a witness of a path of length r fromu to w. If we �nd one, we stop; otherwise there is no path from u to w oflength � r in any tree-pair from the set W (S; d). In this ase, we performanother san starting from the head of the list W (S; d) in searh of awitness of path-length r+1. We inrement r until we �nd one witness orr beomes 2d. In the latter ase, we onlude that there is no path fromu to w aptured in any tree-pair of the set W (S; d).The following invariant is maintained throughout the series of edge deletions.I APSP : At every stage M [u; w℄ points to the �rst tree-pair in the list W (S; d)that is a witness of the shortest path from u to w among all paths from u tow aptured by tree-pairs of the set W (S; d).From the initialization of M , it follows that the invariant holds in the begin-ning. A simple indutive proof on the number of edge deletions an be used11



to show that the invariant I APSP always holds.Cost Analysis : As mentioned in Lemma 4, the total ost of initializing thematrixM is O(n2jSj). Now we shall assess the total ost inurred in the threekinds of operations that we perform to maintain the matrix M .The total ost of the �rst operation over any sequene of edge deletions isO(mdjSj).During the seond operation, for every v 2 S, we ompute the set of vertex-pairs whose distane in (in tree,out tree)(v; d) has inreased. Sine we do notproess a vertex-pair (u; w) whenever either of them falls beyond distane dfrom v, therefore, a vertex-pair will be reported in this set at most 2d timesby a tree-pair. It follows that a total of O(n2d) time will be spent per tree-pair in omputing suh sets over the entire sequene of edge deletions. Sinethere are jSj tree-pairs, the total ost inurred in the seond operation will beO(n2djSj).To assess the total ost inurred in the third operation, the key observationis that for a partiular distane r � d and a vertex-pair (u; w), a tree-pair fromthe set W (S; d) is onsidered at most one for being a witness of path-lengthr (from u to w). This is beause a tree-pair that eases to be a witness ofpath-length r from u to w an never beome a witness of path-length r from uto w in future. Thus for a pair of verties, the total ost inurred in searhingthe list W (S; d) will be O(djSj) over any sequene of edge deletions. Sinethere are O(n2) pairs of verties, the total ost inurred in the third operationwill be O(n2djSj).Summing up the ost of all operations, we an onlude that the total ostinurred in maintaining all-pairs shortest paths with respet to the witnessset W (S; d) is O(n2jSj+mdjSj+ n2djSj), i.e., O(n2djSj).Theorem 5 Given a graph G(V;E), a set of tree-pairs W (S; d) for a setS � V and a positive integer d, all-pairs shortest paths with respet to thewitnesses W (S; d) an be maintained under edge-deletions with optimal querytime and O(n2djSj) total update time.3.3 Maintaining reahability and shortest paths orresponding to all-paths oflength 2 [d0; d℄It follows from Theorem 3 (and 5) that by hoosing witness set W (V; d), wean maintain all-pairs reahability (shortest paths) orresponding to paths oflength � d. Notie that the update ost ahieved is proportional to the size ofthe witness set. Therefore, to improve the update ost, a relevant question is :Can we maintain all-pairs reahability (shortest paths) orresponding to pathsof length � d using o(n) size witness set? We shall now use random samplingto show that indeed a sub-linear size set S suÆes.12



Consider any two verties u and w in the graph. At an instane T , suppose wereeive a query asking for reahability (shortest-path) from u to w. Let puwbe a path (shortest path) from u to w of length 2 [d0; d℄; d0 < d in the graphat that instane. There are 
(d0) verties lying on the path puw, and at leastone of them will be present in a random sample of nd0 verties with probability� 1 � 1e . So in the witness set W (S; d), that we are maintaining, if S is auniform random sample of nd0 verties, then the reahability query from u to wat instane T will be answered orretly with probability � 1� 1e . The suessprobability an be made arbitrarily lose to 1 at the expense of inreasing thesample size by a fator of  lnn as mentioned in the following lemma.Lemma 6 [12℄ Given a path puw of length l from u to w, if we sample nl lnnverties (for any  > 0), then with probability 1� 1n , at least one of the vertieswill be piked from the path puw in the sample.Therefore, for maintaining all-pairs reahability (shortest paths) orrespond-ing to paths of length 2 [d0; d℄, it would suÆe to maintain a witness-matrixwith respet to a set W (Sd0; d), where Sd0 is a set formed by piking eahvertex of the graph independently with probability lnnd0 . Eah reahability(shortest-path) query from any vertex u to another vertex w in the graphwill be answered orretly with probability � 1�1=n provided there is a path(shortest-path) of length 2 [d0; d℄ from u to w. Expeted size of the set Sd0 isn lnnd0 . This observation an be ombined with Theorems 3 and 5 to yield thefollowing result.Theorem 7 Given a graph G(V;E) and integers d; d0 with 1 � d0 < d �n, all-pairs reahability (or shortest paths) orresponding to paths of length2 [d0; d℄, an be maintained with optimal query time w.h.p. by maintaining awitness matrix M with respet to the set W (Sd0; d). It requires O( dd0mn lnn+n3 lnnd0 ) total update time for maintaining all-pairs reahability, whereas formaintaining all-pairs shortest paths the total update time required is O( dd0n3 lnn).4 Deremental algorithm for maintaining transitive losureWe maintain all-pairs reahability orresponding to short and long paths sep-arately. We all the paths of lengths � d the short paths, and the paths oflength > d the long paths, where d will be �xed shortly. It follows that for apair of verties u; w 2 V , there is a path from u to w if and only if there isa short path or a long path from u to w. Therefore, for maintaining all-pairsreahability under deletion of edges it suÆes to solve the following two sub-problems.Maintaining reahability orresponding to short paths : It follows13



from the desription given in setion 2 that out tree of depth d rooted at avertex u maintains the set of verties reahable within distane d from u. Theset of out trees of depth d from every vertex an thus be used for maintainingall-pairs reahability orresponding to short paths, and the total update timerequired is O(mnd). In future we shall refer to this data struture by Sd0.Maintaining reahability orresponding to long paths : Theorem 7shows that all-pairs reahability orresponding to paths of length 2 [r; 2r℄an be maintained by keeping a witness matrix M with respet to the setW (Sr; 2r). To maintain all-pairs reahability for paths of length 2 [d; n℄, wepartition the interval [d; n℄ into log2 nd sub-intervals : [d; 2d℄; � � � ; [2id; 2i+1d℄; � � �,[n=2; n℄. For eah sub-interval [2id; 2i+1d℄ starting from i = 0, we build andmaintain the set W (S2id; 2i+1d). It an be seen that at any stage in the se-quene of edge-deletions, if there is a path of length � d from a vertex u toa vertex w, the set [i<log2 n=di=0 W (S2id; 2i+1d) has a witness of reahability fromu to w. Therefore, in order to maintain all-pairs reahability orrespondingto long paths, it suÆes to maintain a witness matrix M with respet to theset [i<log2 n=di=0 W (S2id; 2i+1d). Now, using Theorem 7, the total update time formaintaining the witness matrix M with respet to this set will bei<log2 ndXi=0  mn lnn + n3 lnn2id ! = O mn ln2 n+ n3 lnnd !
We shall denote the above data struture by Lnd . We maintain all-pairs reah-ability by keeping the data strutures Sd0 and Lnd simultaneously. Deleting anedge will require updating both the data strutures, and thus the total up-date time for maintaining all-pairs reahability (transitive losure) over anysequene of edge-deletions will beO mnd+mn ln2 n+ n3 lnnd ! = O �mn ln2 n + n2pm lnn� for d = nplnnpmTheorem 8 Given a graph G(V;E), all-pairs reahability information an bemaintained under deletion of edges by an algorithm that ahieves O(1) querytime w.h.p. and O(n ln2 n + n2plnnpm ) amortized update time per edge deletion.There are two previous algorithms for maintaining transitive losure underdeletion of edges with O(1) query time. The �rst algorithm due to La Poutreand Van Leeuwen [18℄ ahieves O(m) amortized update time while the seondalgorithm due to Demetresu and Italiano [6℄ ahieves O(n3m ) amortized updatetime. These two algorithms together establish an upper bound of O(n 32 ) onthe update time. By suitably ombining our algorithm with [18℄, we an statethe following Corollary.Corollary 9 There exists a deremental algorithm for maintaining transitive14



losure with O(n 43 3plnn) amortized update time and optimal query time w.h.p.5 Deremental algorithm for maintaining all-pairs approximate short-est pathsWe introdued the terminologies of witness of reahability and witness of short-est path. In this setion, we introdue one more type of witness, namely awitness of approximate shortest path.Consider a pair of verties u; w 2 V suh that the vertex u lies in in treeand the vertex w lies in out tree of depth d rooted at a vertex v. The pair(in tree,in tree)(v; d) not only ats as a witness of reahability from the ver-tex u to the vertex w, it also gives an upper bound (thus estimates) of 2don the distane from u to w. In other words, if Æ(u; w) is the distane fromvertex u to vertex w, the tree-pair (in tree,in tree)(v; d) ats as a witness of2dÆ(u;w) -approximate shortest-path from u to w.We present an eÆient deremental algorithm for maintaining all-pairs (1+�)-approximate shortest paths for any � > 0. The algorithm an be visualizedas a areful re�nement of the algorithm for maintaining all-pairs reahabilitydesribed in the previous setion. The following lemma is the basis for main-taining witnesses of (1 + 2�)-approximate distanes for all-pairs of vertiesseparated by distane 2 [d; d(1 + �)℄.Lemma 10 Given a sample S�d � V formed by piking eah vertex inde-pendently with probability lnn�d , the set W (S�d; (1=2 + �)d) has a witness of(1 + 2�)-approximate distane with probability 1 � 1=n, for a pair of vertiesseparated by distane 2 [d; d(1 + �)℄.PROOF. Let puw be a shortest-path from vertex u to vertex w of length2 [d; d(1 + �)℄ (see Figure 2). Let suw be the set of the verties lying onPSfrag replaements
u v wd �d(1 + �)d

< (12 + �)d puw
Fig. 2. a witness of (1=2 + �)-approximate shortest path from u to w is rooted at vthe path puw that are at distane � �d=2 from the mid-point of puw. Clearlyjsuwj = �d. It an be observed that an in tree and an out tree of depth (1=2+�)drooted at any v 2 suw aptures the path puw ompletely, and thus establishesan upper bound of (1 + 2�)d on the distane from u to w. Sine the atual15



distane from u to w lies in the interval 2 [d; (1+ �)d℄, therefore, the tree-pair(in tree,out tree)(v; d) : v 2 suw is a witness of (1 + 2�)-approximate shortestpath from u to w.A sample S�d � V formed by piking eah vertex independently with proba-bility lnn�d has at-least one vertex from the set suw with probability � 1� 1=n.So the setW (S�d; (12+�)d) has a witness of (1+2�)-approximate distane for apair of verties separated by distane 2 [d; d(1 + �)℄ with probability > 1� 1n .It follows from Lemma 10 that in order to maintain (1 + 2�)-approximatedistanes/shortest-paths for all-pairs of verties separated by distane 2 [d; (1+�)d℄, it suÆes if we maintain witness matrix for all-pairs reahability with re-spet to the witness setW (S�d; (12+�)d). So we an state the following theoremalong the lines of Theorem 7.Theorem 11 Given a graph G(V;E) and d � n, all-pairs (1+2�)-approximateshortest paths for all-pairs of verties separated by distane 2 [d; (1+ �)d℄, anbe maintained under edge-deletions with optimal query time w.h.p. by main-taining a witness matrix M for all-pairs reahability with respet to the setW (S�d; (12 + �)d). The total update time required over any sequene of edge-deletions is O(mn lnn� + n3 lnn�d ).We use the idea of maintaining (1+�)-approximate shortest paths orrespond-ing to short and long paths separately (also used for maintaining transitivelosure in the previous setion). We all the paths of lengths � d the shortpaths, and the paths of length > d the long paths, where d will be determinedin the analysis.Maintaining (1+ �)-approximate shortest paths for vertex-pairs sep-arated by long paths:In order to maintain (1 + �)-approximate shortest paths for pair of vertiesseparated by distane 2 [d; n℄, we partition the interval [d; n℄ into ln1+� ndsub-intervals : f((1 + �)id; (1 + �)i+1d)ji < ln1+� ndg. For eah sub-interval[(1 + �)id; (1 + �)i+1d℄ starting from i = 0, we build and maintain the setsWi =W (S�(1+�)id; (1 + �)i(12 + �)d) and update the matrix M aordingly.Proessing of an edge deletion involves updating eah tree-pair, and searhingfor new witness for eah u; w 2 V if M [u; w℄ eases to be the witness due tothe reent edge deletion. Whenever searh for witness of reahability from uto w fails in list Wi, we start searh in next list Wi+1. Thus the followinginvariant (along the lines of I � ) will be maintained for eah u; w 2 V .I R : At any time if sets Wi1 ;Wi2; � � � ;Wik : i1 < i2 � � � < ik are the only setsthat have witnesses of reahability from u to w, then M [u; w℄ will point to the�rst witness of reahability (from u to w) in the list Wi116



Let the length of the shortest-path from vertex u to vertex w lies in inter-val ((1 + �)jd; (1 + �)j+1d). Lemma 10 ensures that the list Wj must havea tree-pair whih is a witness of (1 + 2�)-approximate shortest path from uto w, and the invariant I R implies that M [u; w℄ will point to this tree-pair.In other words, the reahability-witness matrix M with respet to the set[i<ln1+� n=di=0 Wi maintains witnesses of (1 + 2�)-approximate shortest path foreah pair (u; w) separated by distane 2 [d; n℄. Using Theorem 11, the totalupdate time required for maintaining the witness matrixM over any sequeneof edge-deletions will bei<ln1+� ndXi=0  mn lnn� + n3 lnn(1 + �)i�d! = O mn lnn�2 + n3 lnn�2d !
So the amortized update time per edge deletion required for maintaining (1+�)-approximate shortest paths for all-pairs of verties separated by long pathsis O(n lnn�2 + n3 lnn�2dm ).Maintaining shortest paths for vertex-pairs separated by short paths: We maintain out tree of depth d from eah vertex to report exat distanebetween any pair of verties separated by short paths. The amortized updatetime per edge deletion is O(nd)Balaning the update bounds for maintaining all-pairs (1 + �)-approximateshortest path for long and short paths, we get d = nplnn�pm . Hene the amortizedupdate time per edge deletion for maintaining (1 + �)-approximate shortestpaths will be O(n lnn�2 + n2plnn�pm ).Theorem 12 Given an unweighted graph G(V;E), there exists a data stru-ture for maintaining all-pairs (1+ �)-approximate shortest paths/distane withoptimal query time w.h.p. and O(n lnn�2 + n2plnn�pm ) amortized update time peredge-deletion.King [16℄ gave a fully dynami algorithm for maintaining all-pairs (1 + �)approximate shortest paths that require O(n2 ln3 n�2 ) update time per edge dele-tion. For updates onsisting of edge deletions only, our algorithm improves theupdate time by a fator of O(pm ln5 n� ).6 Deremental algorithm for maintaining all-pairs distanes andall-pairs shortest pathsWe maintain all-pairs shortest paths/distanes by keeping a witness of shortestpath (if exists) for eah vertex-pair. It follows from Theorem 7 that for main-17



taining shortest paths for all-pairs of verties separated by distane 2 [r; 2r℄,it suÆes to maintain a matrix of shortest-path witnesses with respet tothe set W (Sr; 2r). In order to maintain shortest paths for all-pairs of ver-ties (irrespetive of the distane), we build and maintain W (Sr; 2r) for eahr 2 f1; 2; 4; � � � ; 2i; � � � ; n=2g. It follows from subsetion 3.2 that with respetto the set [i<log2 ni=0 W (S2i ; 2i+1), an entry M [u; w℄ gets initialized to a witnessof the shortest path from u to w for all u; w 2 V in total time O(n3).Proessing of an edge deletion involves updating eah tree-pair and searhingfor new shortest-path witness for eah pair u; w 2 V if path length from u to wpassing through M [u; w℄ has inreased due to the reent edge deletion. Whilesearhing for a witness of path length r from u to w, we will on�ne our searhwithin the list W (S2i; 2i+1) for 2i < r � 2i+1. Whenever searh for witnessof path of length 2i+1 fails in the list W (S2i; 2i+1), we move onto the nextlist W (S2i+1; 2i+2). We proeed in this way for vertex-pair (u; w) performingO(n lnn) work per witness list (sanning list of length n2i lnn, for 2i times).Sine there are now log2 n lists and a total of n2 vertex-pairs, the total updateost will be O(n3 ln2 n) over any sequene of edge deletions. We an thus statethe following theorem.Theorem 13 Given an unweighted graph G(V;E), there exists a data stru-ture for maintaining all-pairs shortest distanes in O(n3 ln2 nm ) amortized updatetime per edge-deletion and taking O(1) time to answer a distane query w.h.p.Remark : Demetresu and Italiano [7℄ designed an O(n3m ln3 n) update timealgorithm for maintaining all-pairs shortest paths under deletion of edges.Their algorithms ahieves O(1) query time w.h.p. and improves the previousO(n2) update time of King [16℄ for dense graphs. Our algorithm improves theupdate time further by a fator of O(lnn).For initial omplete graph, the new algorithm ahieves O(n ln2 n) amortizedupdate time. But for sparse graphs the update time may be �(n2). So thereis still no deremental algorithm for maintaining all-pairs shortest distanesthat ahieves sub-quadrati update time for all graphs and takes O(1) time toanswer distane query. However, for the ase of shortest path reporting prob-lem, we are able to design a deremental algorithm that requires O(n 32plnn)update time for any graph and answers any query in optimal time. The im-provement is ahieved by ombining the onept of �ltering searh [2℄ withthe data strutures Sd0, Lnd in a novel way as follows.Consider any two verties u and w in a graph G(V;E) under deletion of edges.Suppose we reeive a query \report distane from u to w" at an instane.Let w be reahable from u at that instane. If the shortest path from u tow is of length luw � d, we are able to answer the query in O(1) time using18



out tree(u; d) of the data-struture Sd0. Otherwise 2id < luw � 2i+1d holds forsome 0 � i < log2 nd . Note that w.h.p. the set W (S2id; 2i+1d) has a witness ofthe shortest path from u to w. But �nding the witness may require O(jS2idj)time (not onstant !) sine it takes O(1) time to �nd the length of the pathfrom u to w lying in a tree-pair 2 W (S2id; 2i+1d). This fored us to maintain amatrix of all-pairs shortest-path witnesses so that we an answer any distanereporting query in onstant time. However, for a shortest-path reporting query,we must in any ase spend O(luw) time to report all the edges on the shortestpath. Therefore, if we spend additional O(luw) time to �nd the shortest pathwitness, we will still be ahieving O(luw) query time for shortest path report-ing, whih is optimal. (This is indeed the idea of �ltering searh [2℄). Now tomaterialize this idea, we need to ensure that whenever the shortest-path tobe reported lies in the interval [d; n℄, the number of witnesses to be searhedfor �nding the shortest path should be O(d). In other words, the followinginequality must hold :jS2idj < d for all 0 � i < log2 n=dSine jS2idj = n2id lnn, therefore, pn lnn is the right hoie for d. Note thatthe total number of witnesses in Lnd will be O(pn lnn) for this value of d.Using the data strutures Sd0 and Lnd for d = pn lnn, we an proess anyshortest-path reporting query (say, from u to w) in optimal time as follows :First inquire if w is present in the out tree rooted at u. This operation takesonstant time. If the answer is yes, we an report the shortest path using theout tree rooted at u; otherwise inquire if w is reahable from u or not, usingthe witness matrix M of the data-struture Lnd . If M [u; w℄ is pointing to null,we report in O(1) time that there is no path from u to w. Otherwise, it an beonluded that the shortest path length luw 2 [pn lnn+1; n�1℄. In this ase, atleast one of the vertex of the shortest path from u to w must be present w.h.p.in the sampled set of witnesses. We searh the entire set of witnesses to �ndthe witness of shortest path. The size of the witness set being O(pn lnn), wean thus �nd the witness of the shortest path from u to w in O(pn lnn) timeand then report the shortest path from u to w passing through it in additionalO(luw) time. Sine luw > pn lnn, the total time taken for proessing a shortestpath reporting query is O(luw) (and hene optimal).The amortized update time per edge deletion for the two data strutures Sd0and Lnd will beO nd+ n3md lnn! = O �n 32plnn� for d = pn lnnTheorem 14 An unweighted graph G(V;E) an be preproessed to build adata struture that answers any on-line shortest path reporting query in op-timal time w.h.p. while ensuring O(min(n 32plnn; n3 ln2 nm )) amortized updatetime per edge-deletion. 19



7 Spae Requirement of our AlgorithmsIt an be seen that all the algorithms given in this paper employ a witnessmatrix M and O(n) number of in trees and out trees. The matrix M learlyoupies �(n2) spae. Although the earlier sheme given in [16℄ requires �(m)spae for maintaining an in tree (or an out tree), it has been improved to O(n)by King and Thorup [17℄. Thus the total spae requirement for maintainingO(n) number of in trees or out trees is O(n2). Hene the spae requirement ofall the algorithms given in this paper is O(n2).
8 Conlusion and Open ProblemsIn this paper, we presented improved deremental algorithms for maintainingtransitive losure and all-pairs exat/approximate shortest paths with optimalquery time. The key onept underlying our algorithms has been the impliitsheme for maintaining reahability/shortest-path information. Later we alsouse this sheme along with a new hierarhial distane reporting sheme inpaper [1℄ for the problem of maintaining all-pairs approximate shortest pathsin undireted unweighted graphs under deletion of edges. We show that it ispossible to ahieve O(n1+Æ) bound (for arbitrarily small � > 0) on amortizedupdate ost at the expense of inreased approximation fator of the distanereported.There have been new developments in the �eld of dynami graph algorithmsever sine we submitted this paper. For the problem of all-pairs reahabil-ity under edge-deletions, Roditty and Zwik [19℄ design an algorithm thatrequires O(n) amortized update ost, and thus improves our bounds for all-pairs reahability problem. For fully dynami maintenane of all-pairs shortestpath, Demetresu and Italiano [8℄ present an algorithm that ahieves O(n2)amortized ost per update whih is superior to the previous O(n2:5) boundahieved by King [16℄. Note that for all-pairs approximate shortest paths inundireted graphs, there are stati algorithms [3,9℄ that require O(n2 lnn)time. In these ases, the fully-dynami algorithm of [8℄ provides only logarith-mi improvement. Therefore, it is desirable to design a fully dynami algorithmfor maintaining all-pairs approximate shortest paths with o(n2) update time,possibly at the expense of inreased query time.20
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