
Efficient Algorithms for Computing All Low s-t Edge Connectivities and

Related Problems

Ramesh Hariharan∗ Telikepalli Kavitha† Debmalya Panigrahi‡

Abstract

Given an undirected unweighted graph G = (V, E) and an
integer k ≥ 1, we consider the problem of computing the
edge connectivities of all those (s, t) vertex pairs, whose edge
connectivity is at most k. We present an algorithm with
expected running time Õ(m + nk3) for this problem, where
|V | = n and |E| = m. Our output is a weighted tree T
whose nodes are the sets V1, V2, . . . , V` of a partition of V ,
with the property that the edge connectivity in G between
any two vertices s ∈ Vi and t ∈ Vj , for i 6= j, is equal to the
weight of the lightest edge on the path between Vi and Vj

in T . Also, two vertices s and t belong to the same Vi for
any i if and only if they have an edge connectivity greater
than k. Currently, the best algorithm for this problem needs
to compute all-pairs min-cuts in an O(nk) edge graph; this

takes Õ(m + n5/2k min{k1/2, n1/6}) time. Our algorithm is
much faster for small values of k; in fact, it is faster whenever
k is o(n5/6).

Our algorithm yields the useful corollary that in Õ(m+
nc3) time, where c is the size of the global min-cut, we can
compute the edge connectivities of all those pairs of vertices
whose edge connectivity is at most αc for some constant α.
We also present an Õ(m + n) Monte Carlo algorithm for
the approximate version of this problem. This algorithm is
applicable to weighted graphs as well. Our algorithm, with
some modifications, also solves another problem called the
minimum T-cut problem. Given T ⊆ V of even cardinality,
we present an Õ(m+nk3) algorithm to compute a minimum
cut that splits T into two odd cardinality components, where
k is the size of this cut.

1 Introduction

Let G = (V, E) be an undirected unweighted graph with
|V | = n and |E| = m. The edge connectivity of two
vertices s, t ∈ V is defined as the size of the smallest cut
that separates them; such a cut is called a minimum
s-t cut. A classical result in graph connectivity, due to
Gomory and Hu [6], states that the edge connectivities
of all pairs of vertices in an undirected graph can
be computed using n − 1 (rather than the näıve

(

n
2

)

)
max-flow computations. Their algorithm computes a
weighted cut-tree T , known as the Gomory-Hu tree, on
V , with the property that the edge connectivity between

∗Strand Life Sciences, Bangalore, India; ramesh@strandls.com
†CSA Department, Indian Institute of Science, Bangalore,

India; kavitha@csa.iisc.ernet.in
‡Bell Labs Research, Bangalore, India;

pdebmalya@lucent.com. This work was done while the au-
thor was at the Indian Institute of Science, Bangalore.

any two vertices s and t in the graph exactly equals the
weight on the lightest edge in the unique s-t path in
T . Further, the partition of the vertices produced by
removing this edge from T is a minimum s-t cut in the
graph.

However, in many applications, the construction of
the entire Gomory-Hu tree is redundant. For instance,
one of the most popular applications of graph connectiv-
ity algorithms is in deciding the robustness of a network
and finding the edge connectivities of the unreliable por-
tions in it. In such situations, one is interested only in
finding the edge connectivities of those pairs of vertices
that are poorly connected in the network. In particular,
we look at the following problem, which we call the “at
most k-connectivity problem”.

Given a graph G and an integer k ≥ 1, compute the
edge connectivities of all pairs of vertices in G whose
edge connectivity is less than or equal to k.

The output should be represented succinctly as
a weighted tree T ′ whose nodes are V1, V2, . . . , V` (a
partition of V) with the property that any two vertices
s, t are in the same subset Vi, for any i, if and only if
the s-t edge connectivity in G is greater than k and the
edge connectivity of a vertex in Vi and a vertex in Vj

for i 6= j, is equal to the weight of the lightest edge on
the path between Vi and Vj in T ′.

1.1 Background and New Results. Currently, the
best algorithm to solve the at most k-connectivity prob-
lem involves computing all-pairs min-cuts. Thus all s-t
edge connectivities are computed. This means that the
entire Gomory-Hu tree is constructed, which involves
n−1 max-flow computations [6, 8]. This leads to a time
complexity of O(nm min{m1/2, n2/3} log(n2/m)) using
the Golberg-Rao max-flow algorithm [5]. This can be
improved to O(m + n5/2k min{k1/2, n1/6} log(n/k)) by
preprocessing1 the graph. Thus the previous best time
complexity was Õ(m+n5/2k min{k1/2, n1/6}). We show
the following result here.

1This preprocessing uses the Nagamochi-Ibaraki construction
on unweighted graphs [10] to keep down the number of edges in
the graph to O(nk) without affecting the output of the at most
k-connectivity problem.

Theorem 1.1. The at most k-connectivity problem can
be solved in expected Õ(m + nk3) time in an undirected
unweighted graph with n vertices and m edges.

The parameter k is typically a small value, since we
are after all interested in identifying poorly connected
pairs of vertices. For small values of k, our algorithm
is much faster than the previous best. In fact, our
algorithm is faster whenever k is o(n5/6). Recall that
our algorithm needs to output a weighted tree T ′ and
the edge connectivities of all poorly connected (s, t)
vertex pairs can be easily computed from this tree T ′.
A related problem is that of finding all k-edge connected
components in a given graph; an O(m+n2k2) algorithm
was given in [11] for this problem in an undirected graph
with m edges and n vertices.

The fastest algorithm for computing a global min-
cut (i.e., smallest among all cuts) in a graph is due
to Gabow [4] and it runs in Õ(m + nc2) time on
undirected graphs, where c is the size of a global min-
cut. However, the algorithm does not readily extend to
computing edge connectivity between pairs of vertices
whose edge connectivity is slightly greater than the
global minimum. In particular, one might be interested
in computing the edge connectivities of all those pairs of
vertices (s, t) whose edge connectivity is within a factor
α of the global min-cut c. Our result shows that we can
compute all s-t edge connectivities which are at most
αc in Õ(m + n(αc)3) time.

Using a sampling technique due to Karger [9], we
show the following theorem, which gives us an almost
linear time algorithm for the approximate version of this
problem, when α and ε are constants.

Theorem 1.2. All pairs of vertices whose edge connec-
tivity is at most α times the size of a minimum cut of G
and no pair whose edge connectivity is more than (1+ε)α
times the size of a minimum cut can be identified with
probability 1 − 1/n in expected Õ(m + n(α/ε2)3) time.

This theorem applies to weighted graphs as well.
We also use a sampling technique due to Benczúr

and Karger [2] in conjunction with our at most k-
connectivity algorithm to devise an algorithm for finding
the approximate edge connectivity between each pair of
vertices in Õ(n5/2) time, with the additional guarantee
that if the edge connectivity between a pair of vertices
is at most

√
n, then it is reported exactly.

Another problem we consider is a natural general-
ization of the minimum s-t cut problem called the min-
imum T-cut problem:
Given a subset of vertices T of even cardinality, find the
size of a smallest cut in the graph that splits T into two
odd-cardinality components.

The minimum T-cut problem arises in studying the
perfect matching polytope of a graph [7]. Moreover,
minimum T-cut procedures are used in several branch
and bound algorithms for problems like the TSP. The
minimum T-cut problem can be solved by construct-
ing a Gomory-Hu tree. Alternatively, there is an al-
gorithm by Rizzi [12] which does not explicitly con-
struct the Gomory-Hu tree but uses at most |T| − 1
max-flow computations, leading to a time complexity of
O(|T| · (time for a max-flow in G)). Here we show the
following result.

Theorem 1.3. The minimum T-cut problem can be
solved in expected Õ(m + nk3) time in an undirected
unweighted graph with n vertices and m edges, where k
is the size of a minimum T-cut.

1.2 Our Methods. Our algorithms are based on the
notion of a partial Gomory-Hu tree. For any k, imagine
contracting all those edges in the Gomory-Hu tree T ,
whose weight is greater than k. This defines a tree T ′

on subsets of vertices, call them V1, V2 . . . , V`, where
s, t ∈ Vi for some i if and only if all the edges in the s-t
path in the tree T have weight greater than k. Hence,
s-t edge connectivity in G for any s, t in the same Vi,
for any i, is at least k + 1 and the s-t min-cut value for
any pair s, t that belong to different sets Vi, Vj in the
partition V1, V2 . . . , V` is the weight of the lightest edge
on the path between the nodes Vi and Vj in the tree T ′.

Clearly, computing a partial Gomory-Hu tree solves
the at most k-connectivity problem. We obtain our
efficient algorithm for computing a partial Gomory-Hu
tree by using a minimum Steiner cut algorithm of Cole
and Hariharan [3] as our basic subroutine. As we shall
see, this offers multiple advantages over the traditional
flow-based approach. However a näıve implementation
of this algorithm as our basic subroutine would imply
a running time of Õ(m + n · nk3) for our algorithm.
We use randomization here and show that if we choose
the root of the trees built in the minimum Steiner cut
algorithm uniformly at random from the Steiner set,
then the expected running time of our entire algorithm
to compute the partial Gomory-Hu tree is just Õ(m +
nk3).

Organization of the paper. The rest of the
paper is organized as follows. Section 2 discusses
the Gomory-Hu tree construction algorithm and the
minimum Steiner cut algorithm and shows how they
can be used to give an algorithm for computing a partial
Gomory-Hu tree. Section 3 shows how this algorithm
can be made efficient by reusing the work done in
various iterations of the minimum Steiner cut algorithm.
Section 3.2 has our approximation algorithm for the αc-
connectivity problem. Our algorithm for the minimum

T-cut problem is given in Section 4. We conclude with
a summary of the results presented in this paper.

2 Partial Gomory-Hu tree

In this section we review the Gomory-Hu tree construc-
tion algorithm [6, 8] and present a simple algorithm to
construct a partial Gomory-Hu tree. The algorithm to
construct a Gomory-Hu tree uses the classical concept
of submodularity of cuts.

Fact 2.1. (Submodularity of cuts) If A and B
are two subsets of vertices in a graph and δ(X) repre-
sents the size of the cut (X, V \X), then δ(A)+ δ(B) ≥
δ(A ∩ B) + δ(A ∪ B).

Fact 2.1 leads to the following theorem, which is used
in the algorithms in [6] and [8].

Theorem 2.1. If (S, V \ S) is a minimum s-t cut in
G and u, v ∈ S, then there exists a minimum u-v cut
(S∗, V \ S∗) such that S∗ ⊂ S.

The Gomory-Hu tree construction algorithm [6]
initializes the cut-tree T to a single node that contains
the entire vertex set. At any step of the algorithm, pick
a node S of T containing more than one vertex and
choose any two vertices s and t in S. Contract the entire
subtree subtended at each neighbor of S into a single
node and perform a max flow computation from s to t in
the new graph. Theorem 2.1 ensures that the minimum
s-t cut thus obtained (we call it C) is also a minimum s-t
cut in the original graph. Now, in T , the node S is split
into S1 and S2 according to C and the two nodes thus
formed are joined by an edge of weight equal to the size
of C. Further, all the neighboring subtrees of S become
neighboring subtrees of S1 or S2 depending upon which
side of C they lie on. The algorithm terminates when
all the nodes of T become singleton sets. Thus T is a
weighted tree whose nodes are the vertices of V . It can
be shown that T captures all-pairs min-cuts.

However, constructing the entire Gomory-Hu tree
is not necessary for the at most k-connectivity problem.
We would like to construct a partial Gomory-Hu tree
which captures only those s-t min-cuts whose size is
≤ k. The problem with a flow-based approach in such a
scenario is that the values of the max flows in different
iterations might be arbitrarily ordered and hence we
would not know till the (n − 1)th iteration if we have
identified all s, t pairs whose edge connectivity is at most
k.

To circumvent this problem, we introduce the min-
imum Steiner cut problem. Given a subset S ⊆ V ,
called the Steiner set, the Steiner connectivity is the size
of the smallest cut that splits S into two non-empty

components. Such a cut is called a minimum Steiner
cut. The following simple observation about minimum
Steiner cuts helps us in the at most k-connectivity prob-
lem.

Fact 2.2. If S∗ and S are subsets of vertices satisfying
S∗ ⊆ S, then the minimum Steiner cut of S∗ is at least
as large as the minimum Steiner cut of S. This follows
from the fact that a Steiner cut of S∗ is also a Steiner
cut of S.

Fact 2.2 implies that if the Steiner cut of a node
in the cut-tree is larger than k, then all pairs of
vertices in that node have an edge connectivity larger
than k. We will use Fact 2.2 to design a simple
deterministic algorithm (Algorithm 1.1) for computing
a partial Gomory-Hu tree that solves the at most
k-connectivity problem. This algorithm follows the
same approach as the Gomory-Hu algorithm except for
replacing the s-t min-cut algorithm with a minimum
Steiner cut algorithm. It is easy to see that when this
algorithm terminates, each node of T has minimum
Steiner cut value larger than k. Thus our algorithm
constructs a partial Gomory-Hu tree corresponding to
the parameter k.

The fastest algorithm to compute a minimum
Steiner cut is by Cole and Hariharan [3] (we will re-
fer to this algorithm as the CH algorithm). It can be
easily shown that, after a preprocessing step of O(m)
time, the CH algorithm takes Õ(nk3) time in each it-
eration of our while loop. Hence the running time of
Algorithm 1.1 is Õ(m + n2k3).

3 An Efficient Algorithm

In this section we present a more efficient algorithm
for the at most k-connectivity problem. We show that
the work done by the CH algorithm in one iteration
of Algorithm 1.1 can be reused in another iteration.
So, first we need to understand in some detail how
the CH algorithm works. This algorithm is basically a
constructive proof of the following theorem that appears
in [1]2.

Theorem 3.1. Given an Eulerian directed graph G and
any vertex r, there exist k edge disjoint directionless
trees T1, T2, . . . , Tk rooted at r such that each vertex
v in G appears exactly con(v) times over all the trees
and has in-degree exactly con(v) over these trees, where
con(v) is the edge connectivity of r to v and k =
max
v 6=r

{con(v)}.

2Actually a slightly stricter version of the theorem appears in
the cited reference.

Algorithm 1.1 An algorithm for partial Gomory-Hu tree with parameter k for graph G = (V, E)

– Initialize the tree T to a single node, which is the entire vertex set V .
– Initialize the queue Q to the queue containing only one element, which is the set V .
while the queue Q is not empty do

– delete the first element of Q; call this element S.
– call the minimum Steiner cut algorithm with the set S as the Steiner set.
if the value, c, of this minimum Steiner cut is ≤ k then

– let S1 and S2 be the two components that S is split into by the above cut; update T by splitting the
node S into nodes S1 and S2 and introduce an edge of weight c between S1 and S2.
– set the neighbors of S1 and S2 in the tree T appropriately.
– insert the node S1 (similarly, S2) in the queue Q if S1 (resp., S2) contains more than one vertex.

end if

end while

The CH algorithm first uses the Nagamochi-Ibaraki
construction [10] as a preprocessing step to reduce the
number of edges in the graph to O(nk) where k is
the size of the minimum Steiner cut. The undirected
graph thus constructed is converted to an Eulerian
directed graph by orienting each undirected edge in both
directions. Any vertex in the Steiner set S is designated
as the root r and the algorithm proceeds by constructing
trees rooted at r satisfying the constraints specified in
Theorem 3.1. A collection of vertices B becomes a
black supervertex after constructing i trees if the edge
connectivity of r to B is i (i.e., when all the vertices in
B are contracted into a single node, the minimum cut
separating r from this node is of size i). From this stage
onwards, vertices in B are contiguous in all trees they
appear in. Note that due to restructuring of the trees,
it might so happen that B occurs (possibly multiple
times) in some jth tree, where j > i and is absent from
a tree Tj , j ≤ i. The only restriction is that B has to
appear exactly i times over all the trees. Also, note
that all vertices in B might not appear in all trees, but
vertices of B that do appear in a tree have to appear
contiguously. This leads to a hierarchical structure of
black supervertices.

The algorithm terminates when a black supervertex
containing vertices in S is produced. Let us denote this
supervertex by BS . It is easy to see that (BS , V \ BS)
forms a minimum Steiner cut and BS is the side of this
cut not containing the root r. What is interesting to
note is that all the vertices of BS appear contiguously
in all trees at the termination of the algorithm. Further,
if one now wants to finds the Steiner connectivity of
a different set of vertices (obviously, no Steiner vertex
can be part of a black supervertex; otherwise, its
connectivity from r has already been decided), then we
can continue to construct more trees, and the vertices
in BS shall always remain contiguous in these trees.
This means that in further stages of the algorithm,

BS can be thought of as a single vertex. Another
property is that BS is a minimal Steiner min-cut, which
means that no proper subset of BS can be a Steiner
min-cut. The CH algorithm runs in O(nk3 log n) time
and the preprocessing step takes O(m) time. Hence,
the algorithm has a total time complexity of O(m +
nk3 log n) or Õ(m + nk3).

We would like to use the properties of the CH
algorithm, stated above, in our new algorithm. Let us
view our partial Gomory-Hu tree algorithm in terms
of its computation tree C. Each node in C consists of
a call to the CH algorithm with a particular Steiner
set. The subproblem corresponding to the root of C
is the computation of a minimum Steiner cut for the
Steiner set V . This is nothing but a global min-cut in
G. Let (U0, V \ U0) be this cut. The CH algorithm
which computed the cut (U0, V \ U0) did so by picking
some vertex in V as its root and building l rooted trees,
where l is the size of this cut. Call this vertex, which
was picked as the root, r and assume that r ∈ U0.

We had associated the entire vertex set V with
the root of C - with the two children of the root,
(call them v1 and v2), we associate the sets U0 and
V \ U0, respectively. The subproblem associated with
the node v1 in C is the computation of a minimum
Steiner cut with Steiner set U0. To compute this cut,
we do not work with the graph G; we compute this
minimum Steiner cut in the graph G1 that is obtained
by contracting all the vertices in V \U0 into a single node
s0. The crucial idea now is the following: in order to
compute this cut (A, B) where the vertices in U0 ∪ {s0}
are partitioned into A and B, we do not have to start
from scratch but continue from where we stopped after
building the l trees which determined the cut (U0, V \U0).
In these l trees, all the vertices in V \ U0 appeared
contiguously since V \ U0 is a black supervertex in the
trees - so contracting them and regarding them as one
node comes for free. So the first l trees which were built,

can be regarded as a part of the process of computing
the minimum Steiner cut for the Steiner set U0.

More generally, at any stage of our algorithm, when
we compute the minimum Steiner cut for a Steiner set S,
this set S corresponds to a node in the partial Gomory-
Hu tree and the subtrees rooted at each neighbor of this
node in the partial Gomory-Hu tree are contracted to
single nodes or supervertices. We compute the minimum
Steiner cut for the Steiner set S in this graph. And
most importantly, this minimum Steiner cut need not be
computed from scratch and the trees used at its parent
in C can be reused if the root node of those trees belongs
to S.

In fact, it is not just that the trees used at a node
in C can be reused in one of its child subproblems,
but we will show that it is likely that we can reuse
the trees in the larger of the two child subproblems.
We will show that when we build trees for a minimum
Steiner cut computation, if we choose the root r of these
trees uniformly at random from the Steiner set and if
we consider only minimal Steiner min-cuts, then it is
likely that the root shall lie on the larger of the two
sides of this minimal Steiner min-cut. Hence we have
the first few trees already constructed for the larger
subproblem. This argument will be formally stated and
proved in Section 3.1. Our final result is stated below
as Theorem 3.2.

Theorem 3.2. (Main Theorem) On an input graph
with O(nk) edges, the successive calls to the CH al-
gorithm have a cumulative expected time complexity of
O(nk3 log2 n), where k is the maximum value of a min-
imum Steiner cut for any iteration of the algorithm.

Now we present our improved algorithm as Algo-
rithm 3.1. The algorithm essentially performs a breadth
first walk on the computation tree C, starting from the
root where the entire vertex set V is the Steiner set and
it ignores all computation subtrees whose edge connec-
tivity has already exceeded k.

The algorithm uses a queue Q which stores the list
of Steiner sets for which the CH algorithm has to be
called. Additionally, it stores the number of trees al-
ready constructed and the trees themselves along with
each Steiner set. This is because we will reuse trees con-
structed earlier at a node for one of its child subprob-
lems. For any subproblem extracted from the queue,
if no tree has already been constructed for this sub-
problem, then the algorithm chooses a root uniformly
at random from the Steiner set. The algorithm then
proceeds to compute trees using the CH technique and
stops either if it crosses k +1 trees or if the Steiner con-
nectivity has been computed already (which is indicated
by the presence of a black supervertex Bj containing

some Steiner vertex). In the first case, the Steiner set is
discarded since it is at least (k + 1)-connected. On the
other hand, in the second case, the partial Gomory-Hu
tree T is modified accordingly and two new subprob-
lems are spawned on S1 and S2, with trees constructed
at this stage preserved for reuse in the subproblem for
S2 since r ∈ S2 (because S1 ⊆ Bj and r /∈ Bj).

3.1 Analysis. We shall now prove the Main Theorem
(Theorem 3.2), which we stated earlier in Section 3. We
shall need the following lemmas.

Lemma 3.1 is straightforward.

Lemma 3.1. In our algorithm for the at most k-
connectivity problem on an input graph of O(nk) edges,
each node of the computation tree C has a time complex-
ity of O(nk3 log n).

Proof. Recall that we have restricted ourselves to input
graphs with O(nk) edges. So, the time complexity of the
first call to the CH algorithm is O(nk3 log n), according
to [3]. In the subsequent phases, shrinking of vertex sets
into single nodes leads to a decrease in the number of
edges and vertices. Also note that in each node of the
computation tree C, the Steiner connectivity is either at
most k or we stop after constructing k + 1 trees. So,
each node of C has a time complexity of O(nk3 log n).

By bounding the running time of each subproblem
by O(nk3 log n), the child subproblem where the trees
constructed for the parent can be reused comes com-
pletely for free, since the number of trees to be con-
structed in the child is also upper bounded by k, and
we have already accounted for construction of k trees in
the parent.

Lemma 3.2 gives the recurrence relation for the
running time of a subproblem in terms of its child
subproblems.

Lemma 3.2. In our algorithm for the at most k-
connectivity problem, let C = (S, Γ) denote a node in
the computation tree C with Steiner set S and set of su-
pervertices Γ. Let s = |S| and γ = |Γ|. Let the two
children of C in C be denoted by C1 = (S1, Γ1) and
C2 = (S2, Γ2). Let s1 = |S1|, s2 = |S2|, γ1 = |Γ1| and
γ2 = |Γ2|. If T (s, γ) denotes the expected cumulative
time complexity of all proper descendants3 of C in C,
then

T (s, γ) = T (s1, γ1) + T (s2, γ2)(3.1)

+
s1

s
(s2 + γ2)k

3 log(s2 + γ2)

+
s2

s
(s1 + γ1)k

3 log(s1 + γ1).

3In a tree, vertex v is a proper descendant of vertex u if either
v is a child of u or the parent of v is a proper descendant of u.

Algorithm 3.1 A faster algorithm for a partial Gomory-Hu tree with parameter k for G = (V, E)

– Initialize the tree T to a single node containing the entire vertex set V .
– Initialize the queue Q to the queue containing the single element (V, 0, ∅).
{The format of a tuple in the queue is (Steiner set, number of trees already constructed, these trees).}
while the queue Q is not empty do

– flag := TRUE

– delete the first element (S, i, {T1, . . . , Ti}) from Q.
– if i = 0 then pick a vertex in S uniformly at random as the root r.
while i ≤ k and flag = TRUE do

– construct tree Ti+1 rooted at r.
– find black supervertices.
if ∃ some black supervertex Bj such that Bj ∩ S 6= ∅ then

– S1 := Bj ∩ S;
– S2 := S \ S1;
– Split node S into S1 and S2 and connect them by an edge of weight i in T .
– Set the neighbors of S1 and S2 in T appropriately.
– if |S1| > 1 then insert (S1, 0, ∅) in the queue Q.
– if |S2| > 1 then insert (S2, i, {T1, . . . , Ti}) in the queue Q.
{The trees used for S are being reused for S2 since the root r of these trees is in S2.}
– flag := FALSE

else

– i := i + 1
end if

end while

end while

Proof. The expected time T (s, γ) needed for all proper
descendants of C is the sum of the expected time needed
at C1, the expected time needed at C2, and the expected
times needed for the proper descendants of C1 and C2.
The expected times needed for the proper descendants
of C1 and C2 are T (s1, γ1) and T (s2, γ2), respectively.
Let us now calculate the expected time needed at C1

and C2.
The root of the trees constructed for the node C in

the computation tree was chosen uniformly at random
from S. Hence the probability that the root is a vertex
in S1 is s1/s. If the root is in S1, then the computation
at C1 comes for free and the computation at C2 takes
(s2 + γ2)k

3 log(s2 + γ2) time. Otherwise, the root is in
S2, in which case the computation at C2 comes for free
and the computation at C1 takes (s1+γ1)k

3 log(s1+γ1)
time. Thus the expected time needed at the nodes C1

and C2 is (s1/s) · (s2 + γ2)k
3 log(s2 + γ2)+ (s2/s) · (s1 +

γ1)k
3 log(s1 + γ1). Thus our recurrence for T (s, γ) is

T (s, γ) = T (s1, γ1) + T (s2, γ2)

+
s1

s
(s2 + γ2)k

3 log(s2 + γ2)

+
s2

s
(s1 + γ1)k

3 log(s1 + γ1).

However, we need to consider a subtle point here. The
equation above is valid if our algorithm always picks the

same minimum Steiner cut to split C on, irrespective
of the choice of root at C. However, note that the
CH algorithm does not return a single Steiner min-cut,
but all the Steiner min-cuts that are minimal on the
side not containing the root4. Our algorithm needs to
decide which Steiner min-cut to split C on. Note that
we are always interested in retaining as many vertices as
possible in the part of the Steiner cut which contains the
root since we shall get the corresponding subproblem
for free in the next iteration. So, the algorithm always
splits C along that particular cut (among the minimal
Steiner min-cuts returned by the CH algorithm) which
retains the maximum number of vertices on the side
of the root. This ensures that the time complexity
obtained in the analysis is an upper bound on the
actual time complexity, since the root component in the
actual algorithm shall be at least as large as S1 or S2

(depending on where the root lies).

We bound log(si + γi) by log n for i = 1, 2 in Equa-
tion (3.1) and define T ∗(·, ·) as T (·, ·) = T ∗(·, ·)k3 log n.

4These are Steiner min-cuts where the side not containing
the root has edge connectivity strictly greater than the Steiner
connectivity.

Then Equation (3.1) becomes

T ∗(s, γ) = T ∗(s1, γ1) + T ∗(s2, γ2)

+
s1

s
(s2 + γ2)

+
s2

s
(s1 + γ1).

This simplifies to

T ∗(s, γ) = T ∗(s1, γ1) + T ∗(s2, γ2)(3.2)

+
2s1s2

s
+

γ1s2 + γ2s1

s
.

Lemma 3.3. The cost due to the term 2s1s2/s in the
expression for T ∗(s, γ) in Equation (3.2) adds to a total
cost of O(n log n) over all the nodes in the computation
tree C.

Proof. Let us assume, without loss of generality, that
s1 ≤ s2 < s. Since 2s1s2/s ≤ 2s1 (because s2 < s),
we will distribute the cost by assigning a charge of 2
to each vertex in S1. It may be noted that any given
vertex in the input graph is an element of the Steiner set
in successive nodes along a path of the computation tree
C since the Steiner sets of any two sibling nodes of C are
mutually disjoint. It is this path only that contributes
to the charge assigned to a vertex.

Further, note that when a vertex gets a charge of 2
from a node in the computation tree, it is accompanied
by a reduction of the size of the Steiner set by at least
a factor of 2. This is because vertices in S1, which are
fewer in number than vertices in S2, (by our assumption
that s1 ≤ s2) are being charged. Obviously, on any path
of the computation tree, the size of the Steiner set can
halve at most log n times, since the number of vertices in
the Steiner set associated with the root in C is n. Since
only vertices in a Steiner set are being charged and no
vertex gets a cost of more than 2 logn, the cumulative
cost over all the vertices is O(n log n).

Lemma 3.4. The cost due to the term (γ1s2 + γ2s1)/s
in the expression for T ∗(s, γ) in Equation (3.2) adds
to a total cost of O(n log n) over all the nodes in the
computation tree C.

To prove the above lemma, we shall need
Lemma 3.5.

Lemma 3.5. If n0, n1, n2, . . . are positive integers,
where n0 > n1, n − n1 > n2, n − n1 − n2 > n3, . . .
and n0 > 2, then

n1

n0

+
n2

n0 − n1

+
n3

n0 − n1 − n2

+ . . . < ln n0.

Proof. We prove this lemma by induction. The base
case is easy to see. Since n0 > 2, ln n0 ≥ 1 > n1/n0.
Inductively assume that

(3.3)
n2

n0 − n1

+
n3

n0 − n1 − n2

+ . . . < ln(n0 − n1)

Now, we know that ln(1−x) < −x, for 0 < x < 1, since
1 − x < e−x. Setting x = n1/n0, we have

(3.4) ln
n0

n0 − n1

>
n1

n0

Combining Inequalities (3.3) and (3.4), we get the
following inequality, which proves our claim.

n1

n0

+
n2

n0 − n1

+
n3

n0 − n1 − n2

+ . . . < ln n0.

Proof. (of Lemma 3.4) The term (γ1s2 + γ2s1)/s in
Equation (3.2) represents the cost in the CH algorithm
due to supervertices, i.e., the nodes that are created
by contracting subsets of vertices. We charge each
supervertex for its own cost. Each supervertex moves
down a path in C and hence receives charge only
for computations along a path. Also, note that if a
supervertex moves into a child node from its parent
node in C, it is charged the ratio of the size of the
Steiner set in its sibling to that of the Steiner set in
the parent node. Hence, the total charge received by
a supervertex in the overall computation is of the form
n1/n0 + n2/(n0 − n1) + n3/(n0 − n1 − n2) + . . ., where
n > n0, n0 > n1, n0 − n1 > n2, n0 − n1 − n2 > n3,

By Lemma 3.5, we can bound the total charge on
a supervertex by ln n0 and therefore, by ln n. We also
note that the total number of supervertices increases by
exactly 2 from a parent to its children in C. This follows
from the fact that the supervertices represent neighbors
(actually, subtrees subtended at the neighbors) of a
node in the partial Gomory-Hu tree. When a node
splits into two, each neighbor of the original node gets
assigned to exactly one of the two new nodes spawned.
Also, the two new nodes are neighbors. So, the total
number of supervertices increases by exactly 2 from a
parent node in C to its children subproblems. Initially
there are no supervertices in the root node of C and each
node creates at most 2 supervertices. Since there are at
most n−1 computation nodes in C, the total number of
supervertices is O(n). Hence, the cumulative cost over
all the supervertices is O(n log n).

Proof. (Main Theorem) We note that T ∗(s1, γ1) and
T ∗(s2, γ2) are recursive terms in the expression for
T ∗(s, γ) in Equation (3.2) and are therefore accounted
for at a different level of the computation tree C. Also,
T ∗(1, ∗) = 0. Thus, we conclude that T ∗(n, 0) =
O(n log n). This implies that T (n, 0) = O(nk3 log2 n).

Recall that we defined T (s, γ) on a node by exclud-
ing the cost of the call to the CH algorithm at that
node itself. So the total time complexity is T (n, 0) and
the cost due to the invocation of the CH algorithm at
the root node of C. The latter cost is O(nk3 log n) by
Lemma 3.1. Hence, the total expected time complexity
of our algorithm on a graph with at most O(nk) edges
is O(nk3 log2 n) or Õ(nk3). This proves the Main The-
orem.

Now it is easy to show that the expected run-
ning time of our at most k-connectivity algorithm is
Õ(m + nk3) for any input graph on m edges. We use
the Nagamochi-Ibaraki construction [10] as our prepro-
cessing step. In time O(m), this makes the number of
edges in the input graph O(nk), without changing the
size of any cut smaller than k + 1 and also not creat-
ing any new cut of size at most k. Now, our at most
k-connectivity algorithm on this graph takes expected
Õ(nk3) time according to the Main Theorem. Hence,
the total expected running time is Õ(m + nk3). This
completes the proof of Theorem 1.1, which was stated
in Section 1.

3.2 The approximate at most αc-connectivity

problem. Clearly, our algorithm solves the at most αc-
connectivity problem in Õ(m + nc3) time, where c is
the value of min-cut of G and α ≥ 1 is some constant.
We now present an approximation algorithm for this
problem. Our algorithm is based on uniform random
sampling of the edges in the input graph. We state the
following theorem, due to Karger, that appears in [9].

Theorem 3.3. Let c be the size of the global minimum
cut in an undirected graph G. Build G∗ by including
each edge from G with probability p. If p > 8 logn/ε2c
then with probability 1 − 1/n every cut in G∗ has value
within (1 ± ε) of its expectation.

We use this theorem to give an approximation
algorithm for the at most αc-connectivity problem.
Apply uniform sampling over all edges in the input
graph G with sampling probability p = 32 logn/ε2c,
where ε is our error parameter, to produce a skeleton
graph G∗. The expected size of the global minimum
cut in G∗ is O(log n/ε2).

Run Algorithm 3.1 on G∗ to compute all pairs of
vertices whose edge connectivity is at most (1+ε/2)αpc,
which is O(α log n/ε2). The advantage we get out
of sampling is that the time complexity of the CH
algorithm reduces substantially since the size of the
minimum Steiner cuts are scaled down roughly by a
factor of c (and scaled up by a factor of log n). The
Uniform Sampling Theorem for Cuts guarantees that

the edge connectivity between any two vertices returned
by the algorithm is within (1±ε/2) of its expected value
with a probability of at least 1 − 1/n. We have thus
shown Theorem 1.2. This gives us an almost linear time
Monte Carlo algorithm for this problem, when α and ε
are constants.

All-pairs approximate min-cuts. Another use-
ful corollary of our result is in computing all-pairs ap-
proximate edge connectivities in undirected unweighted
graphs. Since the current best algorithm for all-pairs
exact min-cuts could take Θ̃(n11/3) time [6, 8] (through
n − 1 max-flow computations using the Goldberg-Rao
max-flow algorithm [5]), a useful way of estimating the
edge connectivity of each pair of vertices is to com-
pute all-pairs approximate min-cuts. Using a sampling
scheme of Benczúr and Karger [2], we can compute
(1±ε) estimates of every s-t minimum cut in Õ(n5/2/ε2)
time. So when ε is a constant, computing all-pairs ap-
proximate min-cuts takes Õ(n5/2) time.

We can improve this result by additionally comput-
ing all s-t edge connectivities which are at most

√
n us-

ing our at most k-connectivity algorithm with k =
√

n.
Our algorithm takes expected Õ(n5/2) time. Once all
s-t edge connectivities of at most

√
n have been com-

puted exactly, we use the sampling scheme of Benczúr
and Karger [2] to construct a weighted sparse skeleton
graph, on which we run the max-flow computations to
approximately compute the edge connectivities of the
remaining pairs of vertices. This takes Õ(n5/2) time as
well. Thus in expected Õ(n5/2) time, we compute all-
pairs approximate min-cuts with the additional guaran-
tee that we get the exact value of each minimum s-t cut
whose value is at most

√
n. Such a guarantee would

be valuable since those minimum s-t cuts whose value
is low correspond to fragile parts of the network, and
it would be important to know exactly what their edge
connectivity is, instead of just an approximate estimate.

4 Minimum T-cut problem

Given a set of vertices T ⊆ V of even cardinality, a
cut (A, V \A) such that |A∩T| (and hence, |(V \A)∩T|)
is odd is called a T-cut. The minimum T-cut problem
asks for a T-cut of minimum size. For solving this
problem, we use the following version of submodularity
from [12].

Theorem 4.1. If T1 and T2 are even cardinality sub-
sets of V , and (S1, V \ S1) is a minimum T1-cut but
|S1 ∩ T2| is even, then there exists a minimum T2-cut
(S2, V \ S2) such that S2 ⊂ S1 (or S1 ⊂ S2).

This theorem implies the following lemma.

Lemma 4.1. Let (S, V \ S) be a minimum Steiner cut
for Steiner set T. Then, either

Algorithm 4.1 minTcut(G, T): Minimum T-cut in the
graph G = (V, E)

– Find the minimum Steiner cut (S, V \ S) with
Steiner set T.
if |S ∩ T| is odd then

– return (S, V \ S).
else

– T1 = S ∩ T

– T2 = T \ T1

– Construct G1 and G2 by contracting V \ S and
S respectively.
– return min(minTcut(G1, T1), minTcut(G2, T2)).

end if

(a) S ∩ T is of odd cardinality, in which case (S, V \ S)
is a minimum T-cut, or,
(b) there exists a minimum T-cut (S∗, V \S∗) such that
S∗ ⊂ S (or S ⊂ S∗).

Proof. All T-cuts being Steiner cuts as well, a minimum
Steiner cut is also a minimum T-cut if it splits T into
odd fragments. This proves part (a) of the statement.
Suppose the minimum Steiner cut is not a T-cut. Then
choose vertices u and v such that u ∈ S ∩ T and
v ∈ (V \S)∩T. Obviously, (S, V \S) is a minimum u-v
cut. Now, using Theorem 4.1, we can claim that there
exists a minimum T-cut (S∗, V \ S∗) such that S∗ ⊂ S
(or S ⊂ S∗).

Lemma 4.1 essentially states that a minimum
Steiner cut for Steiner set T (call this cut (A, B)) is
either a minimum T-cut or the problem reduces to com-
puting the smaller of these two cuts: (i) a min (A ∩T)-
cut in the graph where B is contracted to a single node,
(ii) a min (B ∩ T)-cut in the graph where A is con-
tracted to a single node. We give this algorithm as
Algorithm 4.1.

We make our algorithm faster by using the
Nagamochi-Ibaraki (NI) algorithm [10] as a preprocess-
ing step. This algorithm constructs a series of spanning
forests (call them NI spanning forests) using edges in
the graph such that the edges in the first i spanning
forests, for any i, form a subgraph that satisfies the fol-
lowing properties:
(i) Any cut having cardinality at most i in the original
graph retains all its edges in the subgraph.
(ii) Any cut having cardinality greater than i in the orig-
inal graph has cardinality at least i in the subgraph.

Obviously, the first i NI spanning forests have at
most (n − 1)i edges. So, this algorithm gives a sparse
skeleton graph which retains the edge connectivity
properties of the original graph up to a threshold value.

All the NI spanning forests can be constructed in

O(m) time in an unweighted undirected graph [10].
After constructing these forests, our algorithm proceeds
in several iterations. The critical observation is that
we need to consider edges in the first i NI spanning
forests only for identifying the Steiner cuts of T having
cardinality at most i− 1. So, we start off with the first
NI spanning forest and try to construct one directionless
spanning tree using the CH algorithm on these edges.
If we are able to construct the tree, we add the edges in
the second NI forest and try to construct the second
directionless tree, and so on. If we are unable to
construct the first tree, we obtain a Steiner cut of
size 0. We are guaranteed by the property of the NI
forests mentioned above that this cut indeed has 0
edges in the original graph. So, we have obtained a
genuine minimum Steiner cut. If this cut is a T-cut,
we have found a minimum T-cut as well; otherwise, we
split the vertices along this cut to spawn two new sub-
problems and try to construct one tree in each of the
new subproblems, and so on.

In general, after the (i − 1)th iteration, we are left
with a set of subproblems, where each Steiner set is a
subset of T having edge connectivity at least i−1. Also,
for each of these subproblems, i − 1 directionless trees
have already been constructed using the edges in the
first i − 1 NI spanning forests only. For a particular
subproblem, if we find a Steiner cut of cardinality i− 1
after including the edges of the i-th NI spanning forest,
either this cut is a T-cut (in which case we output this
cut as a minimum T-cut), or we split the Steiner set
to spawn two new subproblems and construct i − 1
directionless trees for these subproblems. If no cut of
cardinality i − 1 is found, then we construct the i-th
directionless tree and wait for the next iteration.

We also reuse trees from a parent computation node
in one of its children if the root of the trees constructed
at the parent node is in the Steiner set of the child,
exactly along the lines of Algorithm 3.1 described in
Section 3. We present this algorithm as Algorithm 4.2.

The variable ind stores the current iteration index
and the CH algorithm is constrained to use only the
edges in Ecur. The algorithm uses two queues - Qcur

stores the subproblems in the current iteration and
Qnext stores the subproblems in the next iteration. The
two flags flag1 and flag2 are used to indicate that
the minimum T-cut has not been found, and that the
minimum Steiner cut has not been found for the current
subproblem, respectively.

The analysis of the algorithm is identical to that
of Algorithm 3.1, except that the length of a path in
the computation tree where the size of the Steiner set
reduces by half in each step is log |T|. This leads to
a total time complexity of O(m + nk3 log n log |T|) or

Algorithm 4.2 Our algorithm for minimum T-cut in
the graph G = (V, E)

– run NI algorithm on G to construct all the NI
spanning forests F1, F2,
– initialize ind to 1.
– initialize the set of edges Ecur to F1.
– initialize the queue Qcur to the queue containing
the single element (T, 0, ∅).
– initialize the queue Qnext to an empty queue.
– flag1 := TRUE

while flag1 = TRUE do

while Qcur is not empty and flag1 = TRUE do

– delete the first element (S, i, {T1, . . . , Ti})
from Qcur.
– if i = 0 then pick a vertex in S uniformly at
random as the root r.
– flag2 := TRUE

while i < ind and flag2 = TRUE do

– construct tree Ti+1 rooted at r using edges
in Ecur only.
– find black supervertices.
if ∃ some black supervertex Bj such that
Bj ∩ S 6= ∅ then

– S1 := Bj ∩ S
– S2 := S \ S1

– flag2 := FALSE

if |S1| is odd then

– minTcut := (Bj , V \ Bj)
– flag1 := FALSE

else

– insert (S1, 0, ∅) in the queue Qcur.
– insert (S2, i, {T1, . . . , Ti}) in the queue
Qcur.

end if

end if

– i := i + 1
end while

if flag2 = TRUE then

– insert (S, ind, T1, . . . , Tind) in the queue
Qnext.

end if

end while

– ind := ind + 1
– Ecur = Ecur ∪ Find

– copy Qnext into Qcur and flush Qnext.
end while

– return minTcut.

Õ(m+nk3), thus proving Theorem 1.3, which was stated
in Section 1.

Conclusions. We presented a fast algorithm for con-
structing a partial Gomory-Hu tree and used it to solve
the at most k-connectivity problem and the minimum
T-cut problem. An open problem is to obtain a fast
(possibly, approximate) algorithm to construct the en-
tire Gomory-Hu tree (rather than a partial Gomory-Hu
tree) using our approach.

References

[1] J. Bang-Jensen, A. Frank and B. Jackson, Preserving

and increasing local edge connectivity in mixed graphs,
SIAM J. Discrete Mathematics 8(2) (1995), pp. 155–
178.

[2] A. Benczúr and D. R. Karger, Approximating s-t

Minimum Cuts in Õ(n2) Time, J. Algorithms 37(1)
(2000), pp. 2–36.

[3] R. Cole and R. Hariharan, A fast algorithm for comput-

ing steiner edge connectivity, Proc. of the 35th Annual
ACM Symposium on Theory of Computing, San Diego
(2003), pp. 167–176.

[4] Harold N. Gabow, A matroid approach to finding edge

connectivity and packing arborescences, J. Comput.
System Sci. 50, (1995), pp. 259–273.

[5] A. V. Goldberg and S. Rao, Beyond the flow decompo-

sition barrier, JACM 45(5) (1998), pp. 783–797.
[6] R. E. Gomory and T. C. Hu, Multi-terminal network

flows, J. Soc. Indust. Appl. Math. 9(4) (1961), pp. 551–
570.

[7] M. Grötschel, L. Lovász and A. Schrijver, Geometric

Algorithms and Combinatorial Optimization, Springer-
Verlag, 1988.

[8] D. Gusfield, Very simple methods for all pairs network

flow analysis, SIAM J. Computing 19(1) (1990), pp.
143–155.

[9] D. R. Karger, Random Sampling in cut, flow, and

network design problems, Proc. of the Twenty-Sixth
Annual ACM Symposium on Theory of Computing,
Montréal, Québec, Canada (1994), pp. 648–657.

[10] Hiroshi Nagamochi and Toshihide Ibaraki, A Linear-

Time Algorithm for Finding a Sparse k-Connected

Spanning Subgraph of a k-Connected Graph, Algorith-
mica 7(5&6) (1992), pp. 583–596.

[11] Hiroshi Nagamochi and Toshimasa Watanabe, Com-

puting k-Edge-Connected Components of a Multigraph,
Inst. Electron. Inform.Comm, Vol E76-A, 4 (1993),
pp. 513-517.

[12] Romeo Rizzi, A simple minimum T -cut algorithm, Dis-
crete Applied Mathematics 129(2-3) (2003), pp. 539–
544.

