
Fast Edge Orientation for Unweighted Graphs

Anand Bhalgat∗ Ramesh Hariharan†

Abstract

We consider an unweighted undirected graph withn vertices,
m edges, and edge connectivity 2k. Theweak edge orienta-
tion problemrequires that the edges of this graph be oriented
so the resulting directed graph is at leastk edge-connected.
Nash-Williams proved the existence of such orientations and
subsequently Frank [6], Gabow [7], and Nagamochi-Ibaraki
[12] gave algorithmic constructions. All of these algorithms
took time at least quadratic inn. We provide the first
sub-quadratic (inn) algorithm for this problem. Our algo-
rithm takesÕ(nk4 + m) time. This improves the previous
best bounds of̃O(n2k2 + m) by Gabow [7] andÕ(n2m) by
Nagamochi-Ibaraki [12] whenk ≤ √

n. Indeed, many real
networks havek≪ n.

Our algorithm uses the fast edge splitting paradigm
introduced by Bhalgat et al. [2]. We seek to split out a large
fraction of the vertices, recurse on the resulting graph, and
then put back the split-off vertices. The main challenge we
face is that only vertices with even degree may be split-off in
an undirected graph and there may not be any such vertex
in the current graph. The edge orientation algorithms of
Gabow and Nagamochi-Ibaraki as well as Frank’s proof are
based on showing the existence of at least two even degree
vertices (in fact, vertices with degree 2k) in a 2k minimally
connected graph. We generalize this to show that in any
edge minimal 2k connected graph, there are at leastn/3 even
degree vertices. These vertices are then split-off.

Our next challenge is to drop edges from the given
graph so it remains 2k connected and yet hasΩ(n) even
degree vertices. We provide an algorithm that discards edges
specifically to produceΩ(n) even degree vertices while
maintaining connectivity 2kand takes timẽO(nk4+m). Note
that this algorithm does not necessarily make the graph edge-
minimally 2k edge-connected. We also briefly outline an
Õ(nk5 + m) time algorithm that achieves edge-minimality
which improves the previous best bound ofÕ(m+ n2k2) by
Gabow [7].

∗University of Pennsylvania.bhalgat@seas.upenn.edu. Work partly
done when at Google Inc. and IISc.

†Strand Life Sciences and House of Algorithms, Bangalore.
ramesh@strandls.com. Work partly done when at IISc.

1 Introduction

We consider an unweighted undirected graph withn vertices,
m edges, and edge connectivity 2k . Theweak edge orienta-
tion problemrequires that the edges of this graph be oriented
so the resulting directed graph is at leastk edge connected.
Nash-Williams[13] proved the existence of such orientations
by showing the following theorem.

THEOREM 1.1. Any 2k connected undirected graph G can
be oriented by giving direction to its edges such that in the
resulting directed graph G′ is at least k connected.

Frank [6] gave a constructive proof of weak orientation
theorem based on edge splitting. Algorithms for weak
orientation problem by Gabow [7] and Nagamochi-Ibaraki
[12] are based on the Frank’s proof. In particular, Gabow’s
algorithm takes timeÕ(n2k2 + m) and the algorithm of
Nagamochi-Ibaraki takes timẽO(n2m). In many real world
networksk ≪ n and that motivates the following question:
can the edge orientation problem be solved in time near-
linear inn, possibly at the expense of factors polynomial in
k. We address this question by providing such an algorithm.
Our algorithm takes timẽO(nk4 +m).

Previous approaches for a problem use edge-splitting
to remove vertices from the graph; edges incident on these
vertices are paired up resulting in a new graph with edge
connectivity 2k. The problem is then solved recursively.
The time taken is quadratic because vertices are split-off
one at a time. Our algorithm uses the fast edge splitting
paradigm introduced by Bhalgat et al. [2]. We seek to split
out a large fraction of the vertices, recurse on the resulting
graph, and then put back the split-off vertices. The main
challenge we face is that only vertices with even degree
may be split-off completely in an undirected graph and there
may not be any such vertex in the current graph. The edge
orientation algorithms of Gabow and Nagamochi-Ibaraki as
well as Frank’s proof are based on showing the existence of
at least two even degree vertices (in fact, vertices with degree
2k) in a minimally 2k edge-connected graph. Here, a graph
is said to be minimally 2k edge-connected if removing even
a single edge causes the global min-cut to drop below 2k.
We generalize the above fact to show that in any minimally
2k edge-connected graph, there are at leastn/3 even degree
vertices. These vertices are then split-off.

Our next challenge is to drop edges from the given
graph so it remains 2k connected and yet hasΩ(n) even

degree vertices. We provide an algorithm that discards edges
specifically to produceΩ(n) even degree vertices while
maintaining connectivity 2kand takes timẽO(nk4+m). Note
that this algorithm does not necessarily make the graph
minimally 2k edge-connected. We also briefly outline an
Õ(nk5 +m) time algorithm that achieves edge-minimality.

2 Preliminaries

This section outlines definitions and consolidates all previ-
ous results from literature that we will need. Let the input
undirected graphG = (V,E) haven vertices andm edges.
Let c(G) ≥ 2k denote the global min-cut forG, wherek is
a positive integer. We will use the following theorems from
literature.

THEOREM 2.1. [5] Consider any directed graph with
global min-cut c(G) (if the graph is undirected then convert
it to a directed graph by directing each edge in both direc-
tions). The number of edge disjoint arborescences rooted at
any specified vertex r equals c(G).

THEOREM 2.2. [2] For an undirected graph G with global
min-cut c(G) and any given positive integer h≤ c(G), h edge
disjoint arborescences as in Theorem 2.1 can be found in
timeÕ(nh3 +m).

THEOREM 2.3. [11] Given undirected graph G, all but upto
n∗ c(G) edges can be discarded in O(n+ m) time so the
remaining graph continues to be c(G) connected.

We also use the edge splitting technique introduced
by Lovász [9],[10] (exercise 6.53). Edge splitting in a
graph involves replacing two edges(a,b) and (b,c) by an
edge (a,c). The goal of this operation is to reduce the
graph size while retaining certain connectivity properties
thus serving as an important inductive and recursive tool for
proving connectivity properties on the graph. By splitting
off a vertexv, all edges incident on a vertexv are paired
maintaining some connectivity properties and vertexv is
discarded. Lovász showed that in an undirected graph with
edge connectivity more than 2, any even degree vertex can
be split off maintaining the global edge connectivity. We
will need the following constructive result to split-off many
vertices simultaneously.

THEOREM 2.4. [2] Suppose we are given undirected graph
G with c(G) > 1, a subset W of even degree vertices in G,
and a number h≤α, whereα is the minimum of the pairwise
connectivities of vertices outside W. Then vertices in W can
be split-off in timeÕ(nh2+m) to obtain a new graph G′ with
c(G′) ≥ h.

The 2k-partial Gomory-Hu Tree. Given an undirected
graphG with c(G)≥ 2k, the 2k-partial Gomory-Hu treeT of
G is defined as a tree satisfying the following two properties:

• The nodes ofT represent a partition of the vertex set of
G. The set of vertices associated with a particular node
x of G is denoted byν(x) and vertices in this set have
pairwise edge-connectivity at least 2k+1.

• Each edgee of T represents a cut of size 2k; this cut
separates vertices ofG associated with nodes on one
side ofe from vertices ofG associated with nodes on
the other side.

Note thatT can be obtained from the full Gomory-Hu tree
by compressing all edges with weight more than 2k. Our
algorithm uses these 2k-partial Gomory-Hu trees, which can
be constructed using the following theorem from [1].

THEOREM 2.5. [1] Given undirected graph G with c(G) ≥
2k, the2k-partial Gomory-Hu tree can be constructed in time
Õ(nk2 +m).

3 Edge Orientation Algorithm Overview

The algorithm for edge orientation appear below in Algo-
rithm 3.1. In essence, it splits-off a subset of vertices, re-
cursively orients the resulting graph, and then puts back the
split-off vertices. There are challenges in identifying vertices
to be split-off because these need to have even degrees and
also need to be independent.

Algorithm 3.1 Algorithm overview for the edge orientation
problem.

1. Prune edges via Nagamochi-Ibaraki’s algorithm so
|E| ≤ 2knandc(G) ≥ 2k.
2. Prune edges soc(G) ≥ 2k and there areΘ(n) even
degree vertices, each with degreeO(k). LetW denote the
set of even degree vertices with degreeO(k).
repeat

3. Find a maximal independent set comprising only
vertices inW which have not yet been split-off.
4. Split-off the above vertices while maintaining con-
nectivity 2k for the remaining vertices.

until all vertices inW are split-off
5. Recursively solve edge orientation on the current graph;
the boundary case is when there are only 2 verticesa,b
in which case orient half the edges betweena and b
towardsa, the other half towardsb, and orient self-loops
arbitrarily.
for each independent set split-off above, in reverse order
of splitting-off do

6. Put back vertices in this independent set into the
current graph and adjust orientations.

end for

Time Complexity. Step 1 takesO(n+m) time by Theorem
2.3. Step 2 is our key contribution and is described in

Theorem 3.1 below. An existential proof of this theorem
appears in Sections 4 and the constructive proof appears in
5.

THEOREM 3.1. Given an undirected graph G with c(G) ≥
2k and number of edges O(nk), a subset of O(n) edges can be
identified inÕ(nk4) time; removal of these edges maintains
the property that c(G) ≥ 2k but leaves the graph withΘ(n)
even degree vertices, each with degree O(k).

For Step 3, by Turan’s theorem,W has an independent
set of sizeΩ(n/k); further, such an independent set can be
found using a simple greedy algorithm in timeO(n). The
repeat loop thus iteratesO(k logn) times, and Step 3 takes
Õ(nk) time over all these iterations. By Theorem 2.4, Step
4 takesÕ(nk2) time per iteration, givingÕ(nk3) time over
all iterations. Step 5 performs recursion on a graph that
has only a constant fraction of the vertices of the original
graph, and therefore the depth of recursion isO(logn). Step
6 performs only the following operation: given a directed
edge(u,v) with one hidden split-off vertexb (since we split-
off an independent set at a time, there cannot be more than
one hidden split-off vertex inside an edge), we replace this
edge with two directed edges(u,b) and (b,v); clearly this
takes timeO(nk) over all iterations of the for loop. The
overall time complexity is thus̃O(nk4), with Step 2 being
the time bottleneck.

Correctness. The correctness of the algorithm comes from
the following lemma.

LEMMA 3.1. The resulting directed graph has global min-
cut at least k.

Proof. Consider the recursion in Step 5; the input to this
step is an undirected graph with global min-cut at least 2k.
Inductively, assume that orientation on this undirected graph
produces a directed graphH with min-cut at leastk (in the
boundary situation with two vertices, there must be at least
2k edges between the two vertices and orienting half of them
in each direction clearly achieves this). It now suffices to
show that when we put back an independent setX in Step
6, the resulting directed graph continues to have min-cut
k. To show this, we use the arborescences of Theorem 2.1.
So inductively assume that there exist two sets{S1,S2} of
arborescences inH. S1 is set ofk edge disjoint arborescences
directed away from root andS2 is set of k edge disjoint
arborescences directed into the root. We now need to put
back vertices inX and show how theS1 and S2 can be
modified to obtain a new arborescencesS1 and S2 for H
containing vertices fromX as well. Note that this needs to be
only an existential proof so time complexity is unimportant.
We will only discuss how to modifyS1, the modifications
required forS2 are similar.

After running step 6, we run into the following problems
on the arborescences. First, a particular vertexb∈ X could
appear many times in the same arborescence, and second,
not all arborescences need have an occurrence ofX. The first
problem can be solved by a transformation which combines
multiple occurrences ofb in an arborescence; this is done
by taking subtrees hanging off these multiple occurrences
and hanging them off one chosen occurrence. This leaves
at most one non-leaf occurrence ofb in each arborescence.
Leaf occurrences can be moved across arborescences in
S1 or S2 becauseX is an independent set. With these
transformations, we can ensure at most one occurrence ofb
per arborescence. It remains to consider the case when there
are still arborescenes without an occurrence ofb. To handle
this, note thatb has degree at least 2k in the undirected graph
just before it was split-off; after splitting-off at leastk edges
were created, each carryingb as a hidden vertex. These
edges are now oriented and Step 6 creates at leastk directed
edges incident into and going out ofb from these edges. If
all of these are used in the arborescences inS1 andS2 then
b must occur in every arborescence. Otherwise, the unused
edges directed intob can be hung off as leaves in whichever
arborescences they are missing in.

4 A Key Property

In this section, we show a key lemma which will contribute
to the proof of Theorem 3.1.

THEOREM 4.1. Any edge minimal undirected graph with
global min-cut2k has n/3 even degree vertices.

Proof. Consider the partial 2k-Gomory-Hu treeT of G and
note the following properties:

• Each resulting node inT is associated with one or more
vertices ofG and each vertex ofG maps to exactly one
node inT.

• Each edge inT is crossed by exactly 2k edges ofG.

• No edge ofG connects vertices within the same node in
T by edge minimality ofG; so every edge inG crosses
one or more of the edges ofT.

• If l ≥ 2 vertices ofG are associated with the same node
x in T, then each of these vertices has degree at least
2k+1 in G. By properties 2 and 3, it follows thatx has
degree at leastl +1 in T. It also follows that a degree 1
or 2 node inT must have exactly one associated vertex
from G.

By property 4, degree 1 and 2 nodes inT have exactly
one associated vertex fromG each. It readily follows that
vertices ofG associated with leaves inT have even degree
in G, in fact degree exactly 2k. That vertices ofG associated

with a degree 2 nodex in T have even degree as well can be
shown as follows: exactly 2k edges inG must cross each of
the 2 edges incident onx in T and edges ofG which cross
both edges inT do not contribute to the degree ofx in G.
As a corollary, the number of even degree vertices inG is at
least the number of degree 1 and 2 nodes inT. To complete
the proof, we need to show that the number of degree 1 and
2 nodes inT is at leastn/2.

To see this, note that by property 4, the total number
of vertices associated with internal nodes inT is at most
the number of edges inT, which is |T|−1 where|T| is the
number of vertices inT. Or in other words,n−|L| ≤ |T|−1
where|L| is the number of leaves inT, so |T|+ |L| ≥ n+1.
Since |T| ≤ |L| + (|L| − 1) + |D|, where |D| denotes the
number of degree 2 vertices, we have 3|L|+ |D|−1≥ n+1,
so|L|+ |D| ≥ |L|+ |D|/3≥ n/3+2/3, as required.

Corollary 4.1 now provides an existential proof of The-
orem 3.1; the constructive proof will appear in Section 5.

COROLLARY 4.1. Given an undirected graph with global
min-cut at least2k and number of edges O(nk), it is possible
to remove edges so that the global min-cut continues to be at
least2k and there areΩ(n) even degree vertices, each with
degree O(k).

Proof. By Theorem 4.1, removal of appropriate edges will
result inn/3 even degree vertices while maintaning global
min-cut at least 2k. Since the total number of edges isO(nk),
a constant fraction of these even degree vertices must have
degreeO(k).

5 Algorithm Overview for Theorem 3.1

This section describes the framework of our algorithm for
showing Theorem 3.1. Recall that we are given an undirected
graph with global min-cut at least 2k and number of edges
O(nk) and we wish to identify a a subset ofO(n) edges in
Õ(nk4) time such that removal of these edges maintains the
property that global min-cut is at least 2k but leaves the graph
with Θ(n) even degree vertices, each with degreeO(k).
Before explaining the algorithm, we introduce a concept of
relevent graph for a node in 2k partial Gomory-Hu tree.

The Relevant Graph for nodex in a 2k-partial Gomory-
Hu Tree. Let y1 . . .yl denote the neighbours ofx in Gomory-
Hu treeT and letST(yi) denote the subtree ofT rooted at
yi . We extend the definition ofν() to subtrees by defining
ν(ST(yi)) as∪y∈ST(yi)ν(y). We create a new graphG′ by
combining some vertices ofG as follows: vertices ofG
present inν(x) are retained as such inG′ while vertices ofG
present in eachν(ST(yi)) are compressed together to yieldl
new vertices. Self-loops incident on thesel vertices are then
discarded. We call this graphG′ therelevant graphfor node
x in T. The l vertices obtained by compressing vertices in

y1

2k
2k

x
2k

y2

2k

y3

y5

2k
y4

2k partial Gomory-Hu tree ofG

y1

2k

y2 2k

2k

ν(ST(y5)) =

ν(y5)∪ν(y3)∪ν(y4)

x

G′(V(G′),E(G′)−S) is 2k connected

2k

2k

2k

y1

y2

x1 x3

2k

2k

y32k

y4

y5

x2

2k

Updated 2k partial Gomory-Hu tree ofG(V,E−S).

Relevant graph G’ for nodex

Drop edgesSsuch that both end points

of edges inS is in ν(x) and

x has been split intox1,x2,x3

Figure 1: Relevent graph for a node in Gomory-Hu tree
and Overview of the algorithm for edge finding even degree
vertices

ν(ST(y1)) . . .ν(ST(yl)) respectively are calledblack, while
the other vertices are calledwhite. The number of vertices
in G′ is |ν(x)|+ dT(x) and the number of edges is at most
(dG(ν(x))+dT(x)∗2k)/2, wheredT(x) is the degree of node
x in T anddG(ν(x)) is the sum of the degrees inG of vertices
in ν(x). The relevant graph can be determined in linear time,
i.e., in timeO((|ν(x)|+dT(x))+dG(ν(x))+dT(x)∗2k).

Step 1 takes timẽO(nk2) using Theorem 2.5. Step 3 is
the critical step; we show how to perform this step in Section
7; the time taken by this step for one iteration of the repeat
loop will be Õ(nk3). Step 4 is straighforward. We describe
how Step 5 can be performed below in Section 6; it will
follow from Lemma 6.4 below that the time complexity of
this step for one iteration of the repeat loop isÕ(nk2). The
total time complexity now depends upon the time complexity

Algorithm 5.1 Algorithm Overview for Theorem 3.1.
0. InitializeR to the set of even degree vertices inG.
1. Construct the 2k-partial Gomory-Hu treeT for G.
repeat

for each nodex in T do
2. ObtainG′, the relevant graph forx as described in
Section 2.
3. Identify a set of edgesS with both endpoints in
ν(x) with the additional property thatG′ stays 2k
edge-connected even after the removal of edges inS.
4. Remove edges inS from G, and add vertices
spanned byS to R.

end for
5. UpdateT to reflect the removal of edges above.

until |R| > n/4

of Step 2 and the number of iterations of the repeat loop.
We claim the following lemma, whose proof will appear in
Section 7; it follows that the total number of iterations of
the repeat loop isO(k logn) and that the total time taken is
thereforeÕ(nk4), as required.

LEMMA 5.1. Each iteration of the repeat loop increases
|T|+ |R| by Ω(n/k) (where |T| is the number of nodes in
T). And if |T| > n/4 and |R| < n/4, the next iteration
of the repeat loop causes either|R| to becomeΩ(n) or
alternatively, the number of even degree vertices becomes
Ω(n).

Finally, we need to show how to obtainΘ(n) even-
degree vertices. If Lemma 5.1 terminates withΘ(n) even
degree vertices then we are done. Otherwise we show that
by removing only a subset and not all of the edges that got
actually removed in the above algorithm, one can ensure
Θ(n) even-degree vertices. To do this, restrict the graph to
edges removed by the algorithm and find a spanning forest
in this graph; this forest hasΩ(n) vertices with non-zero
degree (because|R| = Ω(n)). In this spanning forest, find
an independent setI of Ω(n) vertices with non-zero degree
(such an independent set exists by Turan’s theorem). For
each vertex inI remove up to 1 edge so its degree becomes
even. This results inΘ(n) even degree vertices. Since the
total number of edges in the input graph isO(nk), it follows
that a constant fraction of these will have degreeO(k). This
proves Theorem 3.1.

Two things remain. First the description of Step 5 for
updating the 2k-partial tree, and second, the description of
Step 3 for identifyingSalong with the proof of Lemma 5.1.

6 Updating the 2k-partial Gomory-Hu Tree T

Given a nodex in T and a subsetS of edges inG with
both endpoints inν(x), we show howT can be updated to
reflect the removal of edges inS from G. Repeating this

A

B b

c

e

a
f

V −B

V −A

d

Figure 2: Submodularity

over all nodesx will yield the final updated tree. Recall that
S satisfies the property thatc(G′) ≥ 2k even after removing
edges inS. We need the following lemmas before describing
the update process.

LEMMA 6.1. In an undirected graph H(V,E) with a cut A
of size (number of edges crossing the cut A) z, another cut
B of size less than z and none of A∩B,A∩ (V −B),(V −
A) ∩ B,(V − A) ∩ (V − B) is empty, then at least one of
A∩B,A∩ (V −B),(V −A)∩B,(V −A)∩ (V −B) is a cut
of size less than z.

Proof. If otherwise, let all cutsA∩B,A∩ (V −B),(V −A)∩
B,(V − A)∩ (V − B) be each of size atleastz, then from
the Figure 2, 2(a+ b+ c+ d + e+ f) ≥ 4z. Since theA
is of size z and B is of size less thanz, from Figure 2
a+b+c+d+2(e+ f)< 2zwhich implies(e+ f)< 0 which
is not possible. Hence the proof.

LEMMA 6.2. In an undirected graph H(V,E) with a cut A
and B of size z, none of A∩B,A∩ (V −B),(V −A)∩B,(V −
A)∩ (V −B) is empty and H is z connected then none of
A∩B,A∩ (V−B),(V −A)∩B,(V −A)∩ (V−B) is a cut of
size more than z.

Proof. If otherwise, let at least one of the cutsA∩B,A∩
(V − B),(V − A) ∩ B,(V − A) ∩ (V − B) be of size more
than z, then sinceH is z connected, from the Figure 2,
2(a+b+c+d+e+ f) > 4z. Since theA andB are of size
z, from Figure 2a+b+c+d+2(e+ f) = 2zwhich implies
(e+ f) < 0 which is not possible. Hence the proof.

LEMMA 6.3. After edges in S are removed from G, c(G) ≥
2k; further, for all nodes y6= x of T , the pairwise connectivity
between vertices inν(y) continues to be least2k+1.

Proof. First, supposec(G) < 2k after removal of edges in
S. The corresponding cutC must splitν(x) because edge

in S have both endpoints inν(x) andc(G) ≥ 2k before the
removal ofS. C must split at least one of theν(ST(yi))’s as
well, becausec(G′) ≥ 2k even after removal ofS. Among
all the cuts of size less than 2k, select a cutC which splits
least number ofν(ST(yi))’s (black vertices). (By definition
of C, V(G)−C splits no lessν(ST(yi))’s thanC.) Let one
of theν(ST(yi))’s split byC beν(ST(y j)). Now, by Lemma
6.1, at least one ofν(ST(y j))∩C, (V(G)−ν(ST(y j)))∩C,
ν(ST(y j))∩ (V(G)−C), (V(G)−ν(ST(y j)))∩ (V(G)−C)
should be a cut of size less than 2k. Out of these,ν(ST(y j))∩
C andν(ST(y j))∩(V(G)−C) cannot be cut of size less than
2k since any cut of size less than 2k should splitν(x) as well.
Also, (V(G)− ν(ST(y j))) ∩C and (V(G)− ν(ST(y j))) ∩
(V(G)−C) split lessν(ST(yi))’s thanC hence cannot be a
cut of size less than 2k by selection ofC. Hence, after edges
in Sare removed fromG, c(G) ≥ 2k.

Second, suppose a new 2k cut splitsν(y) for some node
y 6= x. Since both endpoints of an edge inS are in ν(x)
the above cut must also splitν(x). Let C be the such cut.
Now, by lemma 6.2, cutC∩ ν(ST(y)) is of size 2k. Since
C splits ν(y), cut C∩ ν(ST(y)) separates two vertices of
ν(y) whose connectivity before removingSwas 2k+1. This
is a contradiction since both endpoints of an edge inS are
in ν(x). this cut must have been in existence prior to the
removal ofS, contradicting the fact that vertices inν(y) have
pairwise edge-connectivity≥ 2k+ 1 prior to the removal of
S.

LEMMA 6.4. The2k-partial Gomory-Hu tree T can be up-
dated to reflect deletion of a specified edge set S compris-
ing edges with both endpoints inν(x) in time Õ((|ν(x)|+
dT(x))k2 +dG(ν(x))+dT(x)∗ k), where dT(x) is the degree
of node x in T and dG(ν(x)) is the sum of the degrees in G of
vertices inν(x).

Proof. We describe the update algorithm. By Lemma 6.3, all
nodesy 6= x can be retained as such and only nodex needs
to be split further to identify the new 2k+1 edge-connected
components, as follows. In the description below,G denotes
the graph in which edges inShave been removed.

We now construct the 2k-partial Gomory-Hu tree onG′,
the relevant graph for nodex, using Theorem 2.5. Thel
black vertices inG′ will correspond to leaf nodes in this new
tree; we then put back the subtreesST(yi) associated with
each such leaf to get the final updated 2k-partial Gomory-Hu
treeT ′. The time complexity of this procedure follows from
Theorem 2.5.

To show correctness, it suffices to show that:

• For each nodey in T ′, vertices inν(y) are pairwise at
least 2k+1 edge-connected inG.

• Each edge inT ′ represents a 2k cut inG.

First, for each nodey in T ′, we show that vertices
in ν(y) are pairwise at least 2k+ 1 edge-connected inG.

Let x1 . . .xr be the nodes inT ′ obtained by splitting node
x in T. All other nodesy in T ′, y 6= xi , 1 ≤ i ≤ r, have
corresponding nodes inT andν(y) satisfies the 2k+1 edge-
connectivity requirement by Lemma 6.3. For nodesx1 . . .xr ,
ν(xi) satisfies this requirement inG′ by construction. We
need to show that this holds true forG as well.Suppose for a
contradiction that there exists a 2k cut separating vertices in
ν(xi) in G, but not inG′. Then this cut must necessarily split
one or more of the setsν(ST(yi)), 1≤ i ≤ l . Among all such
cuts of size 2k which splitsν(xi), which exists inG and not
in G′, select a cutC which split least number ofν(ST(yi)),
1 ≤ i ≤ l Let it split ν(ST(y j)). SinceG is 2k connected
andC andν(ST(y j)) are cuts of size 2k, by lemma 6.2 the
cut (V(G)− ν(ST(y j)))∩C is of size 2k which splitsν(xi)
which is against the definition ofC. Hence the contradiction.

Second, we show that each edge inT ′ represents a 2k cut
in G. This is clearly true for edges whose corresponding cuts
do not split anyν(ST(yi)), 1≤ i ≤ l , by virtue of contruction
on G′. It remains to consider edges which do split some
ν(ST(yi)); the corresponding cut is present inT as well
and since edges inShave both endpoints inν(x), these cuts
continue to have size 2k.

7 Identifying edges for removal

Given a nodex in T and G′ the relevant graph forx, this
section shows how to identify a subsetS of edges inG′

satisfying the following properties.

• Both endpoints of edges inSshould be inν(x).

• c(G′) ≥ 2k even after the removal of edges inS.

We also prove Lemma 5.1 in this section. The algorithm for
identifyingS is given below in Algorithm 7.1.

Note that in Step 1, removal of a single edge will
ensure 2k edge-connectedness ofν(x) because vertices in
ν(x) are at least 2k+ 1 edge-connected to begin with. So
consider Steps 2 through 8. Recall that the relevant graph
has |ν(x)|+ dT(x) vertices and(dG(ν(x)) + dT(x) ∗ 2k)/2
edges (see Section 2). Step 1 takes timeO((|ν(x)|+dT(x))+
dG(ν(x)) + dT(x) ∗ 2k). Step 2 takes timeÕ((|ν(x)| +
dT(x))k2 + dG(ν(x)) + dT(x) ∗ 2k) by Theorem 2.4. Step
3 takes timeÕ((|ν(x)|+ dT(x))k3 + dG(ν(x))+ dT(x) ∗2k)
by Theorem 2.2. Step 4, 5, 6 takeO((|ν(x)|+ dT(x)) ∗ 2k)
time. We will show Step 7 takes̃O((|ν(x)|+ dT(x))k2 +
dG(ν(x)) + dT(x) ∗ 2k) time. Step 8 is straightforward.
The total time taken amounts tõO((|ν(x)| + dT(x))k3 +
dG(ν(x))+ dT(x) ∗ k) and is dominated by Step 3. Over all
verticesx of T, this time adds up tõO(nk3), as required. And
vertices inShave both endpoints inν(x) as required because
only valid edges, i.e., those without any black endpoints, are
candidates for addition toS.

We have the following lemma which will be needed in
proving Lemma 5.1 later.

Algorithm 7.1 IdentifyingS for nodex of T.
0. SetS to φ .
if |T| > n/4 then

1. Add any one edge which has both endpoints white
and which has both endpoints inν(x) to S, if such an
edge exists.

else
2. Split-off black vertices inG′ retaining 2k+ 1 edge-
connectivity on the whites to obtainG′′. Denote edges
which are a result of splitting-off as invalid; valid edges
have no hidden black vertices and are present in both
G′′ andG′.
3. Construct 2k + 1 Edmonds’ arbrescences on the
directed version ofG′′ obtained by directing edges in
both directions.
4. Identify the arborescenceA1 which has the maximum
number of valid directed edges incident on vertices
outsideR; let S1 denote the set of these edges.
5. Identify the arborescenceA2 which has the maximum
number of reverse edges for valid directed edges inS1.
6. Consider the set of all valid undirected edges inG′′

incident on vertices outsideR with both forward and
reverse versions inA1∪A2; let S2 denote this set.
7. Run a certification procedure to declare each edge in
S2 as redundant or essential.
8. Add redundant edges fromS2 to S

end if

LEMMA 7.1. Consider one iteration of the repeat loop in
Algorithm 5.1 and all invocations of Algorithm 7.1 in this
iteration (each iteration runs on a different node x of T).
Also suppose|T| < n/4. Then, summed over all the above
invocations,|S| = Ω(n/k) and edges in S2 span Ω(n/k)
vertices which do not belong to R.

Proof. Note that the repeat loop iterates only as long as
|R| < n/4. Since|T| < n/4, the number of invalid edges in
G′′ over all invocations in an iteration is at mostnk/2. Over
all invocations, the total number of edges in arborescences
incident on vertices outsideR is at least 3n(2k+ 1)/8; of
these there must be at least 3n(2k)/8− nk/2 ≥ nk/4 valid
edges. Of thenk/4 valid edges, aΘ(1/k2) fraction gets
added toS2 in Steps 4, 5, and 6. The lemma follows.

Step 7: The Certification Procedure. Consider the graph
G′ with edges inS2 removed. If the min-cut inG′ is at
least 2k, then we declare all ofS2 as redundant. Otherwise,
we have the following lemma, which is the basis for our
certification algorithm described below.

LEMMA 7.2. The global min-cut in G′ with edges in S2
removed is at least2k−1.

Proof. At least 2k− 1 of the arborescences constructed for
G′′ in Step 3 are untouched byS2, i.e., neither forward nor re-
verse versions of edges inS2 appear in these arborescences.
It follows that G′′ is 2k− 1 edge-connected even after re-
moval of edges inS2. To show the corresponding result for
G′, assume for a contradiction thatG′ with edges inS2 re-
moved has global min-cut less than 2k−1, and consider such
a 2k−2 or smaller cut. This cut cannot split the whites, oth-
erwiseG′′ with edges inS2 removed would not be 2k− 1
connected (i.e., splitting blacks cannot increase connectiv-
ity). And cuts which have all whites on one side are unaf-
fected by removal ofS2 because edges inS2 contain only
white vertices. The lemma follows.

The algorithm first removes edges inS2 from G′ and
then obtains the cactus of all 2k−1 cuts inG′. Since 2k−1
is odd, the cactus is a tree [4]. Next it runs two passes.
The first pass processes edgese in S2 in arbitrary order. If
e crosses edges in the cactus then the cactus is modified
by compressing all such edges, otherwisee is marked as
redundant. All cactus edges are reset by uncompressing next.
The second pass processes edgese in S2 in reverse first-
pass order. Again, ife crosses edges in the cactus then the
cactus is modified by compressing all such edges, otherwise
e is marked as redundant.S comprises all edges marked
redundant.

The time required to find all(2k − 1)-cuts and ar-
range these in a cactus isÕ((|ν(x)|+dT(x))k2 +dG(ν(x))+
dT(x)∗2k) [1]. The time taken in the first and second passes
for compressing cactus edges can be kept down toO(logn)
per edge using centroid path decomposition, which amounts
to Õ(dG(ν(x))+dT(x)∗ k). We show correctness next.

LEMMA 7.3. The global min-cut in G′ with edges in S
removed is at least2k.

Proof. Since G′ is 2k edge-connected, every edge in the
cactus is crossed by some edge inS2. It suffices to show
that every edge in the cactus is crossed by some edge in
S2−Sas well. This is true by construction because an edge
is marked redundant and added toS only if all the cactus
edges it crosses are crossed by other edges not yet marked
redundant at that instant.

It remain to prove Lemma 5.1.

LEMMA 7.4. Each edge in S2−S can be associated with a
unique cactus edge, i.e., with a unique cut of size2k in G′

(with edges is S removed).

Proof. At the end of the first pass, each edge inS2−Scrosses
a cactus edge which no previous edge inS2−S (i.e., in first
pass order) crosses. At the end of the second pass, each edge
in S2−Scrosses a cactus edge which no edge which follows
later (i.e., in first pass order) crosses. The lemma follows.

Proof of Lemma 5.1. First, we show that each iteration of
the repeat loop increases|T|+ |R| by Ω(n/k) (where|T| is
the number of vertices inT). This is done as follows.S2 has
sizeΩ(n/k) and spansΩ(n/k) vertices outsideR by Lemma
7.1. By Lemma 7.4, each edge inS2−S is associated with a
unique new 2k cut inG′, i.e., a 2k cut created by the removal
of edges inS. Each such 2k cut causes|T| to increment by 1
when it is updated. IfSspansΩ(n/k) vertices outsideR then
the lemma follows. OtherwiseS2−SspansΩ(n/k) vertices
and therefore|S2−S|= Ω(n/k). The lemma follows.

Second, we need to show that|T| > n/4 and|R| < n/4,
the next iteration of the repeat loop causes either|R| to be-
comeΩ(n) or alternatively, the number of even degree ver-
tices becomesΩ(n). This is done as follows. Consider the
next iteration of the repeat loop and take all invocations of
Algorithm 7.1 in this iteration. Each invocation removes
an arbitrary valid edge, if available, from the corresponding
problem instance. If there areΩ(n) invocations correspond-
ing to degree 1 or 2 nodes inT which have available valid
edges then the lemma follows. Otherwise, there areΩ(n) in-
vocations corresponding to degree 1 or 2 nodes inT which
have no available valid edges; each of these invocations can
be shown to have just one white vertex (if there arex ≥ 2
white vertices, each must have degree at least 2k+1 because
pairwise edge-connectivity for white vertices is 2k+ 1, and
there must bex(2k+1) edges connecting these whites to the
up to 2 available blacks, which is not possible since blacks
have degree 2k); these white vertices must therefore have
even degree. The lemma follows.

8 Achieving Edge Minimality

The above algorithm can modified to achieve edge minimal-
ity in Õ(nk5+m) time by changing steps 4, 5 and 6 in Algo-
rithm 7.1 to selectSwithout regard to incidence on vertices
in R. Each iteration of the repeat loop in Algorithm 5.1 then
causes aΘ(1/k2) fraction of the valid edges to be either de-
clared as redundant or certified as necessary (as for edges in
Lemma 7.4). The number of iterations of the repeat loop then
increases toO(k2 logn) from O(k logn) and the total time in-
creases tõO(nk5 +m).

9 Conclusion and Open problems

In this paper, we show that in an edge minimally 2k con-
nected unweighted graph, there are at leastn/3 even de-
gree vertices. We also give first sub-quadratic inn algo-
rithm for weak orientation problem. Our algorithm runs in
timeÕ(m+nk4) and improves previous bestÕ(m+n2k2) by
Gabow [7]. We also give an edge minimalization algorithm
which runs in timeÕ(m+ nk5) and improves previous best
Õ(m+ n2k2) by Gabow [7]. This is the first algorithm for
edge minimalization which does not check all edges one by
one. One of the open questions is whether randomization can
be used to find a large set of simultaneously droppable edges

with large vertex span.

References

[1] A. Bhalgat, R. Hariharanm T. Kavitha, D. Panigrahi.An
Õ(mn) Gomory-Hu tree construction algorithm for un-
weighted graphs, Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, San Diego, pp. 605-614,
2007.

[2] A. Bhalgat, R. Hariharan, T. Kavitha, D. Panigrahi.Fast
edge splitting and Edmond’s arborescence construction for
unweighted graphs. Proceedings of the Nineteenth annual
ACM-SIAM Symposium on Discrete Algorithms, San Fran-
cisco, pp. 455-464, 2008.

[3] R. Cole, R. Hariharan.A fast algorithm for computing steiner
edge connectivity, Proc. of the 35th Annual ACM Symposium
on Theory of Computing, San Diego, pp. 167-176, 2003.

[4] E.A. Dinits, A.V. Karzanov, M.V. Lomonosov.On the struc-
ture of a family of minimal weighted cuts in a graph. Stud-
ies in Discrete Optimization, A.A. Fridman, Ed., pp. 240-
306, 1976. (Original article in Russian, translation available
from National Translation Center, Library of Congress, Cat-
aloging Distribution Center, Washington D.C, 20541 (NTC
89-20265)).

[5] J. Edmonds,Submodular functions, matroids, and certain
polyhedra, Calgary International Conf. on Combinatorial
Structures and their Applications, Gordon and Breach, New
York, pp. 69-87, 1969.

[6] A. Frank, Applications of submodular functions, in surveys
in combinatorics. London Math Soc. Lecture note series 187,
K. Walker, Ed., Cambridge University Press NY, 1993, pp.
86-136.

[7] Harold N. Gabow,Efficient splitting off algorithms for graphs,
Proc. of the Twenty-Sixth Annual ACM Symposium on The-
ory of Computing, Montréal, Québec, Canada, pp. 696-705,
1994.

[8] R. E. Gomory and T. C. Hu.Multi-terminal network flows, J.
Soc. Indust. Appl. Math. 9(4), pp. 551-570, 1961.

[9] L. Lovász, Lecture, Conference of Graph Theory, Prague,
1974.

[10] L. Lovász,Combinatorial Problems and Exercises, 2nd Ed.,
North-Holland, New York, 1993.

[11] Hiroshi Nagamochi and Toshihide Ibaraki,A linear-time al-
gorithm for finding a sparse k-cormected spanning subgraph
of a k-connected graph, Algorithmica, 7, 1992, pp. 583596.

[12] Hiroshi Nagamochi and Toshihide Ibaraki,Deterministic
Õ(mn) Time edge splitting in undirected graphs, Proc. of the
Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting, Philadelphia, pp. 64-73, 1996.

[13] C. St. J. A. Nash-Williams,On orientations, connectivity and
odd vertex pairings in finite graphs, Canadian .J. Math., 12,
1960, pp. 555-567.

[14] W. Mader, A reduction method for edge connectivity in
graphs, Ann. Discrete Math., 9, 1978, pp. 145-164.

