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Abstract 1 Introduction

We consider an unweighted undirected graph witlertices, We consider an unweighted undirected graph witiertices,

m edges, and edge connectivitg. Zrheweak edge orienta- m edges, and edge connectivity 2Theweak edge orienta-
tion problemrequires that the edges of this graph be orientédn problenrequires that the edges of this graph be oriented
so the resulting directed graph is at lergdge-connected.so the resulting directed graph is at lek&dge connected.
Nash-Williams proved the existence of such orientatiors alNash-Williams[13] proved the existence of such orientaio
subsequently Frank [6], Gabow [7], and Nagamochi-lbardki showing the following theorem.

[12] gave algorithmic constructions. All of these algonith
took time at least quadratic in. We provide the first
sub-quadratic (im) algorithm for this problem. Our algo
rithm takesO(nk* +m) time. This improves the previou

THEOREM1.1. Any 2k connected undirected graph G can
_be oriented by giving direction to its edges such that in the
Sresulting directed graph Gs at least k connected.

best bounds Oé(nz_kz +m) by Gabow [7] andO(n’m) by Frank [6] gave a constructive proof of weak orientation
Nagamochi-lbaraki [12] whek < \/n. Indeed, many real theorem based on edge splitting. Algorithms for weak
networks havéc < n. orientation problem by Gabow [7] and Nagamochi-lbaraki

Our algorithm uses the fast edge splitting paradigf2] are based on the Frank’s proof. In particular, Gabow's
introduced by Bhalgat et al. [2]. We seek to split out a largggorithm takes timeO(n2k2 + m) and the algorithm of
fraction of the vertices, recurse on the resulting graph, aRagamochi-Ibaraki takes tin@(nzm). In many real world
then put back the split-off vertices. The main challenge Watworksk < n and that motivates the following question:
face is that only vertices with even degree may be splitrofféan the edge orientation problem be solved in time near-
an undirected graph and there may not be any such velgXar inn, possibly at the expense of factors polynomial in

in the current graph. The edge orientation algorithms pf\ye address this question by providing such an algorithm.
Gabow and Nagamochi-Ibaraki as well as Frank’s proof afg, algorithm takes tim@(nk* + m).

based on showing the existence of at least two even degree previous approaches for a problem use edge-splitting
vertices (in fact, vertices with degre&)dn a Z minimally o remove vertices from the graph; edges incident on these
connected graph. We generalize this to show that in agtices are paired up resulting in a new graph with edge
edge minimal R connected graph, there are atleg& even connectivity X. The problem is then solved recursively.
degree vertices. These vertices are then split-off. The time taken is quadratic because vertices are split-off
Our next challenge is to drop edges from the givefhe at a time. Our algorithm uses the fast edge splitting
graph so it remainsKconnected and yet hal(n) even paradigm introduced by Bhalgat et al. [2]. We seek to split
degree vertices. We provide an algorithm that discards®dgg; a |arge fraction of the vertices, recurse on the resyltin
specifically to produceQ(n) even degree vertices whilegraph, and then put back the split-off vertices. The main
maintaining connectivity Rand takes tim®(nk*+-m). Note challenge we face is that only vertices with even degree
that this algorithm does not necessarily make the graphredggy pe split-off completely in an undirected graph and there
minimally 2k edge-connected. We also briefly outline agay not be any such vertex in the current graph. The edge
O(nk® +m) time algorithm that achieves edge-minimalityrientation algorithms of Gabow and Nagamochi-lbaraki as
which improves the previous best bound@(fm-+n®k?) by  \ell as Frank's proof are based on showing the existence of
Gabow [7]. at least two even degree vertices (in fact, vertices withekeg
2k) in a minimally & edge-connected graph. Here, a graph
is said to be minimally R edge-connected if removing even
a single edge causes the global min-cut to drop belkw 2
We generalize the above fact to show that in any minimally
*University of Pennsylvanigbhalgat@seas.upenn.edu. Work partly 2k e.dge-conneCted graph, there are.at legSteven degree
done when at Google Inc. and 11Sc, vertices. These vertices are then split-off. .
'Strand Life Sciences and House of Algorithms, Bangalore. OUr next challenge is to drop edges from the given
ramesh@strandls.com. Work partly done when at l1Sc. graph so it remainskKconnected and yet had(n) even



degree vertices. We provide an algorithm that discardsedgee The nodes ofl represent a partition of the vertex set of
specifically to produceQ(n) even degree vertices while G. The set of vertices associated with a particular node
maintaining connectivityRand takes tim@(nk*+m). Note x of G is denoted by (x) and vertices in this set have
that this algorithm does not necessarily make the graph pairwise edge-connectivity at least2 1.

minimally 2k edge-connected. We also briefly outline an

O(niS + m) time algorithm that achieves edge-minimality. ® Each edgee of T represents a cut of sizec2this cut
separates vertices @ associated with nodes on one

2 Preliminaries side ofe from vertices ofG associated with nodes on

This section outlines definitions and consolidates all prev the other side.

ous results from literature that we will need. Let the inpiote thatT can be obtained from the full Gomory-Hu tree
undirected grapl@ = (V,E) haven vertices andn edges. by compressing all edges with weight more than Dur
Let ¢(G) > 2k denote the global min-cut fdB, wherek is  a|gorithm uses thesekzbartial Gomory-Hu trees, which can
a positive integer. We will use the following theorems frorge constructed using the following theorem from [1].
literature.

THEOREM2.5. [1] Given undirected graph G with(6) >

THEOREMZ'l' [5] Qon5|der any d|r_ected graph with 2k, the2k-partial Gomory-Hu tree can be constructed in time
global min-cut ¢G) (if the graph is undirected then converb(nk2+ m)

it to a directed graph by directing each edge in both direc-
tions). The number of edge disjoint arborescences rootedgat

any specified vertex r equalé@). Edge Orientation Algorithm Overview

The algorithm for edge orientation appear below in Algo-
THEOREM2.2. [2] For an undirected graph G with global rithm 3.1. In essence, it splits-off a subset of vertices, re
min-cut ¢G) and any given positive integerhc(G), h edge cursively orients the resulting graph, and then puts baek th
disjoint arborescences as in Theorem 2.1 can be foundsplit-off vertices. There are challenges in identifyingtices
time O(nh3 +m). to be split-off because these need to have even degrees and

. . I dto beind dent.
THEOREM2.3. [11] Given undirected graph G, all butuptoaso needtobe independen

nxc(G) edges can be discarded in(+ m) time so the
remaining graph continues to bé@®) connected.

Algorithm 3.1 Algorithm overview for the edge orientation
problem.

We also use the edge splitting technique introducedl. Prune edges via Nagamochi-lbaraki's algorithm so
by Lovasz [9],[10] (exercise 6.53). Edge splitting in a |E| < 2knandc(G) > 2k.
graph involves replacing two edgéa,b) and (b,c) by an 2. Prune edges sa(G) > 2k and there aré(n) even
edge (a,c). The goal of this operation is to reduce the degree vertices, each with degi@¢k). LetW denote the
graph size while retaining certain connectivity propestie set of even degree vertices with deg@g).
thus serving as an important inductive and recursive taol fo repeat
proving connectivity properties on the graph. By spliting 3. Find a maximal independent set comprising only
off a vertexv, all edges incident on a vertexare paired vertices inW which have not yet been split-off.
maintaining some connectivity properties and verteis 4. Split-off the above vertices while maintaining con-
discarded. Lovasz showed that in an undirected graph with nectivity  for the remaining vertices.
edge connectivity more than 2, any even degree vertex canntil all vertices inW are split-off
be split off maintaining the global edge connectivity. We 5. Recursively solve edge orientation on the current graph;
will need the following constructive result to split-off ma  the boundary case is when there are only 2 vertaés
vertices simultaneously. in which case orient half the edges betwegrand b

_ ) towardsa, the other half towardb, and orient self-loops
THEOREM2.4. [2] Suppose we are given undirected graph arbitrarily.

G with oG) > 1, a subset W of even degree vertices in G, o each independent set split-off above, in reverse order
and a number K a, wherea is the minimum of the pairwise ¢ splitting-off do

connectivities of vertices outside W. Then vertices inW can g pyt pack vertices in this independent set into the
be split-off in timeD(nk? 4+ m) to obtain a new graph Gwith current graph and adjust orientations.

c(G') > h. end for

The 2k-partial Gomory-Hu Tree. Given an undirected
graphG with ¢(G) > 2k, the X-partial Gomory-Hu tre@ of Time Complexity. Step 1 take®©(n+ m) time by Theorem
Gis defined as a tree satisfying the following two propertie®:3. Step 2 is our key contribution and is described in



Theorem 3.1 below. An existential proof of this theorem After running step 6, we run into the following problems

appears in Sections 4 and the constructive proof appearsrirthe arborescences. First, a particular vebtexX could

5. appear many times in the same arborescence, and second,
not all arborescences need have an occurrenge ohe first

THEOREM3.1. Given an undirected graph G witH@) > problem can be solved by a transformation which combines

2k and number of edges(0k), a subset of (n) edges can be multiple occurrences db in an arborescence; this is done

identified inO(nk*) time; removal of these edges maintainsy taking subtrees hanging off these multiple occurrences

the property that (G) > 2k but leaves the graph witB(n) and hanging them off one chosen occurrence. This leaves

even degree vertices, each with degré&)O at most one non-leaf occurrencelofn each arborescence.
Leaf occurrences can be moved across arborescences in

For Step 3, by Turan’s theore has an independentS, or S, becauseX is an independent set. With these

set of sizeQ(n/k); further, such an independent set can kensformations, we can ensure at most one occurrenise of

found using a simple greedy algorithm in tinG¥n). The per arborescence. It remains to consider the case when there

repeat loop thus iterateS(klogn) times, and Step 3 takesare still arborescenes without an occurrenck.ofo handle

O(nk) time over all these iterations. By Theorem 2.4, Stehis, note thab has degree at leask ih the undirected graph

4 takesO(nk?) time per iteration, givingd(nk®) time over just before it was split-off; after splitting-off at leastedges

all iterations. Step 5 performs recursion on a graph thagére created, each carryingas a hidden vertex. These

has only a constant fraction of the vertices of the originatiges are now oriented and Step 6 creates atHhadistcted

graph, and therefore the depth of recursio®{fgn). Step edges incident into and going out bffrom these edges. If

6 performs only the following operation: given a directedll of these are used in the arborescenceS;iandS; then

edge(u,v) with one hidden split-off vertek (since we split- b must occur in every arborescence. Otherwise, the unused

off an independent set at a time, there cannot be more tle@iges directed intb can be hung off as leaves in whichever

one hidden split-off vertex inside an edge), we replace thigborescences they are missing in.

edge with two directed edgés,b) and (b,v); clearly this

takes timeO(nk) over all iterations of the for loop. The4 A Key Property

overall time complexity is thu©(nk?), with Step 2 being |, this section, we show a key lemma which will contribute
the time bottleneck. to the proof of Theorem 3.1.

Correctness. The correctness of the algorithm comes fro

the following lemma r:PHEOREM4.1. Any edge minimal undirected graph with

global min-cut2k has r/3 even degree vertices.

I(;LIJEt'\QtAIAejstlk The resulting directed graph has global MNbro0f. Consider the partialkGomory-Hu treeT of G and

note the following properties:

Proof. Consider the recursion in Step 5; the input to this ¢ Each resulting node ifi is associated with one or more

step is an undirected graph with global min-cut at led&st 2 vertices ofG and each vertex & maps to exactly one
Inductively, assume that orientation on this undirectegpbr nodeinT.

produces a directed grapth with min-cut at leask (in the

boundary situation with two vertices, there must be at least® Each edge ifT is crossed by exactlykedges ofG.
2k edges between the two vertices and orienting half of them
in each direction clearly achieves this). It now suffices to ®
show that when we put back an independent&@t Step

6, the resulting directed graph continues to have min-cut
k. To show this, we use the arborescences of Theorem 2.1; |t | > 2 vertices ofG are associated with the same node

No edge ofG connects vertices within the same node in
T by edge minimality ofG; so every edge i crosses
one or more of the edges of

So inductively assume that there exist two s, S} of x in T, then each of these vertices has degree at least
arborescences . S is set ofk edge disjoint arborescences 2k-+1in G. By properties 2 and 3, it follows thathas
directed away from root an&, is set ofk edge disjoint degree at leagt+ 1 in T. It also follows that a degree 1
arborescences directed into the root. We now need to put 5.5 node inT must have exactly one associated vertex
back vertices inX and show how thes; and S, can be from G.

modified to obtain a new arborescen&sand S, for H

containing vertices fronX as well. Note that this needstobe By property 4, degree 1 and 2 nodeslirhave exactly

only an existential proof so time complexity is unimportanbne associated vertex frof each. It readily follows that
We will only discuss how to modifys;, the modifications vertices ofG associated with leaves ih have even degree
required fors, are similar. in G, in fact degree exactlyk That vertices ofs associated



with a degree 2 nodein T have even degree as well can be
shown as follows: exactlylPedges inG must cross each of
the 2 edges incident anin T and edges o6 which cross
both edges il do not contribute to the degree »fin G.
As a corollary, the number of even degree vertice§ iis at
least the number of degree 1 and 2 nodeg.iffo complete
the proof, we need to show that the number of degree 1 and
2 nodes inT is at leasn/2.

To see this, note that by property 4, the total number

2k partial Gomory-Hu tree o6

of vertices associated with internal nodesTinis at most Y1

the number of edges i, which is|T| — 1 where|T| is the O 2%

number of vertices if. Or in other wordsp— |L| < |T| -1 \

where|L| is the number of leaves ifi, so|T|+|L| > n+1. Lo

Since |T| < |L| + (|L] — 1) + |D|, where |D| denotes the V(ST(ys)) =
number of degree 2 vertices, we haye|3- |D| —1>n+1, vo %k V(ys) UV (ys) UV(ys)

so|L|+|D| > |L|+|D|/3>n/3+2/3, as required.
Relevant graph G’ for node
Corollary 4.1 now provides an existential proof of The-
orem 3.1; the constructive proof will appear in Section 5. Drop edges such that both end points
] ] ] of edgesirSis in v(x) and
COROLLARY 4.1. Given an undirected graph with global _
min-cut at leask and number of edges(@K), it is possible G'(V(G),E(G) - S) is & connected
to remove edges so that the global min-cut continues to be at
least2k and there areQ(n) even degree vertices, each with
degree Qk).

Proof. By Theorem 4.1, removal of appropriate edges will

result inn/3 even degree vertices while maintaning global

min-cut at leastR Since the total number of edge<i$nk),

a constant fraction of these even degree vertices must have

degreeO(k). Updated R partial Gomory-Hu tree o6(V,E — S).
x has been split intay, xo, X3

5 Algorithm Overview for Theorem 3.1

This section describes the framework of our algorithm féigure 1: Relevent graph for a node in Gomory-Hu tree
showing Theorem 3.1. Recall that we are given an undirectstl Overview of the algorithm for edge finding even degree
graph with global min-cut at leask2and number of edgesvertices

O(nk) and we wish to identify a a subset 6{n) edges in

O(nk*) time such that removal of these edges maintains the

property that global min-cut is at leadt But leaves the graph
with ©(n) even degree vertices, each with degr@e).
Before explaining the algorithm, we introduce a concept
relevent graph for a node irk®artial Gomory-Hu tree.

V(ST(y1))...v(ST(y)) respectively are calleblack while

g}e other vertices are calladhite The number of vertices

In G' is [v(x)| + dt(x) and the number of edges is at most
(da(v(x))+dr(x)*2k)/2, wheredr () is the degree of node
The Relevant Graph for nodex in a 2k-partial Gomory-  xin T anddg(v(x)) is the sum of the degrees@of vertices

Hu Tree. Lety; ...y denote the neighbours gin Gomory- in v(x). The relevant graph can be determined in linear time,
Hu treeT and letST(y;) denote the subtree df rooted at i.e., in timeO((|v(X)| + dr (X)) + dg(v(X)) + dt(X) * 2k).

yi. We extend the definition of() to subtrees by defining Step 1 takes tim&(nk?) using Theorem 2.5. Step 3 is
V(ST(Yi)) asUyesT(y)V(y). We create a new grap® by the critical step; we show how to perform this step in Section
combining some vertices d& as follows: vertices ofG 7; the time taken by this step for one iteration of the repeat
present inv(x) are retained as such @ while vertices ofG  loop will be O(nk?). Step 4 is straighforward. We describe
present in each(ST(y;)) are compressed together to yieldhow Step 5 can be performed below in Section 6; it will
new vertices. Self-loops incident on thdseertices are then follow from Lemma 6.4 below that the time complexity of
discarded. We call this grapg® therelevant graptfor node this step for one iteration of the repeat Ioo;ﬁewkz). The
xin T. Thel vertices obtained by compressing vertices botal time complexity now depends upon the time complexity



Algorithm 5.1 Algorithm Overview for Theorem 3.1.
0. Initialize Rto the set of even degree vertices3n ~
1. Construct the Rpartial Gomory-Hu tred for G. a
repeat § f

for each nodexin T do B ;
2. ObtainG/, the relevant graph foras describedin -~ | N Tl
Section 2. V_B d
3. Identify a set of edgeS with both endpoints in
v(x) with the additional property tha®’' stays X
edge-connected even after the removal of edgé&s in
4. Remove edges i% from G, and add vertices
spanned bysto R.

end for

5. UpdateT to reflect the removal of edges above.

until |R| > n/4

Figure 2: Submodularity

) ) over all nodex will yield the final updated tree. Recall that
of Step 2 and the number of iterations of the repeat lo_‘%ﬁ’satisfies the property thafG') > 2k even after removing

We claim the following lemma, whose proof will appear igges irs, We need the following lemmas before describing
Section 7; it follows that the total number of iterations qf,o update process.

the repeat loop i©(klogn) and that the total time taken is

thereforeO(nk?), as required. LEMMA 6.1. In an undirected graph K, E) with a cut A

of size (number of edges crossing the cut A) z, another cut
B of size less than z and none onB,AN(V —B),(V —
A)NB,(V —A)N(V —B) is empty, then at least one of
ANBAN(V-B),(V-ANB,(V-A)N(V —B) is a cut
rR(t_}gize less than z.

LEMMA 5.1. Each iteration of the repeat loop increase
|T|+ |R| by Q(n/k) (where|T| is the number of nodes in
T). And if |[T| > n/4 and |R| < n/4, the next iteration
of the repeat loop causes eithdR| to becomeQ(n) or

alternatively, the number of even degree vertices beco

Q(n). Proof. If otherwise, let all cutdnNB,AN(V —B),(V—-A)N

Finally, we need to show how to obtai®(n) even- B:(V —A)N (V —B) be each of size atleagf then from
degree vertices. If Lemma 5.1 terminates w@n) even the Figure 2, Pa+b+c+d+e+f) >4z Since theA
degree vertices then we are done. Otherwise we show tRa@f Sizez and B is of size less tharz, from Figure 2
by removing only a subset and not all of the edges that got P+C¢+d+2(e+ f) < 2zwhich implies(e+ f) < 0 which
actually removed in the above algorithm, one can ensigd1ot possible. Hence the proof.

O(n) even-degree vertices. To do this, restrict the graph to ) ,

edges removed by the algorithm and find a spanning forb&MA 6.2. In an undirected graph KV, E) with a cut A

in this graph; this forest ha@(n) vertices with non-zero @nd B of size z, none of B, AN (V —B), (V —A)NB, (V —
degree (becaus® = Q(n)). In this spanning forest, fing”) N (V —B) is empty and H is z connected Fhen none of
an independent sétof Q(n) vertices with non-zero degre¢*'B-AN (Y —B),(V =A)NB, (V —A)N(V —B) is a cut of
(such an independent set exists by Turan's theorem). E§€ more than z.

each vertex il remove up to 1 edge so its degree becoms
even. This results i®(n) even degree vertices. Since th
total number of edges in the input graphO&nk), it follows
that a constant fraction of these will have deg@¥&). This

?oof. If otherwise, let at least one of the clAsN B, AN
f\/ —-B),(V—-A)NB,(V —A)N(V —B) be of size more
than z, then sinceH is z connected, from the Figure 2,
proves Theorem 3.1. 2(a+b+c+d+e+ f) > 4z Since theA andB are of size

Two things remain. First the description of Step 5 fcj‘ ]IO;T; Fl%uv:/ehkzzi:sbr:)f+o(i:i§|(eeJlr-|;)r1Ze2tzh\ghlfoholfmp“es
updating the R-partial tree, and second, the description i < P ' proot.

Step 3 for identifyingSalong with the proof of Lemma 5.1. LEMMA 6.3. After edges in S are removed from GGJ >

2k; further, for all nodes y£ x of T, the pairwise connectivity

6 Updating the 2k-partial Gomory-Hu Tree T between vertices in(y) continues to be leagk + 1.

Given a nodex in T and a subse§ of edges inG with
both endpoints irv(x), we show howT can be updated to Proof. First, suppose(G) < 2k after removal of edges in
reflect the removal of edges & from G. Repeating this S. The corresponding c@ must splitv(x) because edge



in S have both endpoints in(x) andc(G) > 2k before the Let x;...x be the nodes iT’ obtained by splitting node
removal ofS. C must split at least one of the(ST(y;))’'sas x in T. All other nodesy in T, y # X, 1 <i <r, have
well, because(G') > 2k even after removal 06. Among corresponding nodes ih andv(y) satisfies the R+ 1 edge-
all the cuts of size less thark2select a cu€ which splits connectivity requirement by Lemma 6.3. For nodes . x;,
least number of/(ST(y;))'s (black vertices). (By definition v(x;) satisfies this requirement i@ by construction. We
of C, V(G) — C splits no less/(ST(yi))'s thanC.) Let one need to show that this holds true f@ras well.Suppose for a
of thev(ST(yi))’s split byC bev(ST(y;)). Now, by Lemma contradiction that there exists & 2ut separating vertices in
6.1, at least one of (ST(yj)) NC, (V(G) — v(ST(y;j)))NC, v(x)IinG, butnotinG'. Then this cut must necessarily split
V(ST(y;))N(V(G)—C), (V(G) —v(ST(yj)))N(V(G)—C) one or more of the setgST(y;)), 1 <i <I. Among all such
should be a cut of size less thak Dut of thesey (ST(y;))N  cuts of size R which splitsv(x;), which exists inG and not
Candv(ST(y;))N(V(G)—C) cannot be cut of size less tharn G/, select a cu€ which split least number of (ST(y;)),
2k since any cut of size less thak €hould splitv(x) aswell. 1 <i <| Let it split v(ST(y;)). SinceG is 2k connected
Also, (V(G) — v(ST(yj)))NC and (V(G) — v(ST(y;))) N andC andv(ST(y;j)) are cuts of size R by lemma 6.2 the
(V(G) —C) split lessv(ST(yi))'s thanC hence cannot be acut (V(G) — v(ST(y;j))) NC is of size X which splitsv(x;)
cut of size less thankby selection ofC. Hence, after edgeswhich is against the definition &. Hence the contradiction.
in Sare removed fron®, c(G) > 2k. Second, we show that each edg@ imepresents alkut
Second, suppose a new @ut splitsv(y) for some node in G. This is clearly true for edges whose corresponding cuts
y # X. Since both endpoints of an edge $hare inv(x) do notsplitanw(ST(yi)), 1<i <I, by virtue of contruction
the above cut must also splitx). LetC be the such cut. on G'. It remains to consider edges which do split some
Now, by lemma 6.2, cu€ N v(ST(y)) is of size X. Since v(ST(y)); the corresponding cut is present Thas well
C splits v(y), cutCNv(ST(y)) separates two vertices ofand since edges i&have both endpoints in(x), these cuts
v(y) whose connectivity before removigwas X+ 1. This continue to have sizek2
is a contradiction since both endpoints of an edg& are
in v(x). this cut must have been in existence prior to tie Identifying edges for removal

removal ofS, contradicting the fact that verticesity) have  Gijven a nodex in T and G’ the relevant graph fox, this
pairwise edge-connectivity 2k+ 1 prior to the removal of gection shows how to identify a subs®tof edges inG’
S satisfying the following properties.

LEMMA 6.4. TheZk-partial Gomory-Hu tree T can be up- | Both endpoints of edges Bshould be inv(x).
dated to reflect deletion of a specified edge set S compris-

ing edges with both endpoints in(x) in time O(([V(X)|+ o ¢(G') > 2k even after the removal of edgesdn
dr (x))k? + dg(v(x)) + dr (x) x k), where & (x) is the degree
of node xin T and@(v(x)) is the sum of the degrees in G of\e also prove Lemma 5.1 in this section. The algorithm for
vertices inv(x). identifying Sis given below in Algorithm 7.1.
Note that in Step 1, removal of a single edge will

Proof. We describe the update algorithm. By Lemma 6.3, %Ihsure R edge-connectedness ofx) because vertices in

nodesy # x can be retained as such and only nadeeeds V(x) are at least R A
. . . + 1 edge-connected to begin with. So
to be split further to identify the newi2 1 edge—connectedconsider Steps 2 through 8. Recall that the relevant graph

cr?mpon(re]qts, a;]g frC])”C:jWS. I%thhe debscription bel?ﬂenotes has [v(x)| + dr (x) vertices and(dg(v(x)) + dr (x) * 2K) /2
the graph In which edges ihave been removed. , edges (see Section 2). Step 1 takes @@gv (x)| +dr (X)) +
We now construct thek2partial Gomory-Hu tree of¥’, dea (U (x de(x) £ 2K).  Step 2 takes timed((Iv(x
the relevant graph for node using Theorem 2.5. The G(v(x)) + dr(x) x 2K). b ((ve9l +
grap 9 - dr (X))K2 + dg(V(X)) + dr (x) * 2k) by Theorem 2.4. Step

black vertices irG’ will correspond to leaf nodes in this newy o R
. "3 takes timeO((|v(X)| + dr (x))k3 + dg(V(X)) + dr (X) * 2k
tree; we then put back the subtre®$(y;) associated with by Theorem 2((2| (Sztlep 4T(5,)23 tam((;|(‘/(§<))|) v dTT(>(<)§ . Zk;

each such leaf to get the final updatdedartial Gomory-Hu time. We will show Step 7 takeé((|v(x)| 4 (X))K2 +

treeT’. The time complexity of this procedure follows fronhG(v(X)) +dr(x)  2k) time. Step 8 is straightforward.
Theorem 2.5. ) ' _ The total time taken amounts 1O((|v(x)| + dr (x))k® +
To show correctness, it suffices to show that: da(V(X)) + dr (x) xK) and is dominated by Step 3. Over all
e For each nodg in T/, vertices inv(y) are pairwise at verticesxof T, this time adds up t®(nk?), as required. And
least X+ 1 edge-connected i@. vertices inShave both endpoints in(x) as required because
only valid edges, i.e., those without any black endpoints, a
candidates for addition t8.
First, for each node/ in T’, we show that vertices We have the following lemma which will be needed in
in v(y) are pairwise at leastk2+ 1 edge-connected i. proving Lemma 5.1 later.

e Each edge iT’ represents akcut in G.



Algorithm 7.1 Identifying Sfor nodex of T. Proof. At least X— 1 of the arborescences constructed for

0. SetSto ¢. G" in Step 3 are untouched I, i.e., neither forward nor re-

if |T| > n/4then verse versions of edges # appear in these arborescences.
1. Add any one edge which has both endpoints whitefollows that G” is 2k — 1 edge-connected even after re-
and which has both endpoints ir(x) to S, if such an moval of edges ir&. To show the corresponding result for
edge exists. G/, assume for a contradiction th@& with edges inS; re-

else moved has global min-cut less thak-21, and consider such
2. Split-off black vertices irG’ retaining X+ 1 edge- a X — 2 or smaller cut. This cut cannot split the whites, oth-
connectivity on the whites to obtai®’. Denote edges erwiseG” with edges inS; removed would not bek— 1
which are a result of splitting-off as invalid; valid edgesonnected (i.e., splitting blacks cannot increase comnect
have no hidden black vertices and are present in bd). And cuts which have all whites on one side are unaf-
G’ andG'. fected by removal of5, because edges i® contain only
3. Construct R+ 1 Edmonds’ arbrescences on thwhite vertices. The lemma follows.

) . y X A .
directed version of” obtained by directing edges in The algorithm first removes edges 8 from G' and

both directions. : o

4. |dentify the arborescenég which has the maximumf[hendzbt;ms thet ca(?tus (:f aIkZZl c;ts Itn(t3 ' S'n(f[e -1

number of valid directed edges incident on vertic ocd, the cactus Is a tree [.]' exLIL IUns two passes.

outsideR: let S, denote the set of these edges. e first pass processes edgds S, in arbitrary order. If

5 Identif’ythe arborescende which has the maximum € crosses edges in the cactus then the cactus is modified
‘ by compressing all such edges, otherwgses marked as

number of reverse edges for valid directed edges in :
6. Consider the set of all valid undirected edge§ih redundant. All cactus edges are reset by uncompressing next

incident on vertices outsid®R with both forward and The second pass pProcesses edgas SZ in reverse first-
reverse versions iA; UAy: let S, denote this set pass order. Again, ié crosses edges in the cactus then the

7. Run a certification procedure to declare each edgecﬁthus is modified by compressing all such edges, otherwise

S, as redundant or essential. eids m;rked as redundantS comprises all edges marked
redundant.

en?i. i?dd redundant edges frog to S The time required to find all2k — 1)-cuts and ar-
range these in a cactus@(|v(x)| + dr (x))k? +dg(v(x)) +
dr () * 2k) [1]. The time taken in the first and second passes
for compressing cactus edges can be kept dowd(togn)
Qe[edge using centroid path decomposition, which amounts
dg(v(x)) + dr (x) k). We show correctness next.

LEMMA 7.1. Consider one iteration of the repeat loop i
Algorithm 5.1 and all invocations of Algorithm 7.1 in thi
iteration (each iteration runs on a different node x of T}p o

Also suppos¢T | < n/4. Then, summed over all the abovg g\ 7.3, The global min-cut in Gwith edges in S
invocations, |S| = Q(n/k) and edges in Sspan Q(n/K) removed is at leasik.
vertices which do not belong to R.

Proof. Since G’ is 2k edge-connected, every edge in the
Proof. Note that the repeat loop iterates only as long aactus is crossed by some edgeSn It suffices to show
IR < n/4. Since|T| < n/4, the number of invalid edges inthat every edge in the cactus is crossed by some edge in
G’ over all invocations in an iteration is at mast/2. Over S, — Sas well. This is true by construction because an edge
all invocations, the total number of edges in arboresceniesnarked redundant and addedSmnly if all the cactus
incident on vertices outsidR is at least 8(2k+ 1)/8; of edges it crosses are crossed by other edges not yet marked
these there must be at least(3k)/8 — nk/2 > nk/4 valid redundant at that instant.
edges. Of thenk/4 valid edges, @(1/k?) fraction gets
added td5; in Steps 4, 5, and 6. The lemma follows. It remain to prove Lemma 5.1.

o ) LEMMA 7.4. Each edge in 5— S can be associated with a
Step 7: The Certification Procedure. Consider the graphumque cactus edge, i.e., with a unique cut of gizén G

G’ with edges inS, removed. If the min-cut irnG' is at (with edges is S removed).
least Xk, then we declare all o5, as redundant. Otherwise,
we have the following lemma, which is the basis for olrroof. Atthe end of the first pass, each edg&in- Scrosses
certification algorithm described below. a cactus edge which no previous edg&in- S(i.e., in first

pass order) crosses. At the end of the second pass, each edge
LEMMA 7.2. The global min-cut in Gwith edges in § in S, — Scrosses a cactus edge which no edge which follows
removed is at leastk — 1. later (i.e., in first pass order) crosses. The lemma follows.



Proof of Lemma 5.1. First, we show that each iteration ofvith large vertex span.
the repeat loop increaséB| + |R| by Q(n/k) (where|T]| is
the number of vertices ii). This is done as followsS, has  References
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one. One of the open questions is whether randomization can
be used to find a large set of simultaneously droppable edges



