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various relationships motivated by computational molecular biology, computer vision, and complexsearches in digitized and distributed multimedia libraries [11, 7]. To this end, two new paradigmswere needed { \Generalized matching" and \Approximate matching".In generalized matching the input is still a text and pattern but the \matching" relation is de�neddi�erently. The output is all locations in the text where the pattern \matches" under the newde�nition of match. The di�erent applications de�ne the matching relation. Examples are stringmatching with \don't cares" [12], parameterized matching [8, 4], less-than matching [3], andswapped matching [21, 2, 9]. Lower bound results on generalized matching can be found in [22].Even under the appropriate matching relation there is still a distinction between exact matching andapproximate matching. In the latter case, a distance function is de�ned on the text. A text locationis considered a match if the distance between it and the pattern, under the given distance function,is within the tolerated bounds. Below are some examples that motivate approximate matching. Incomputational biology one may be interested in �nding a \close" mutation, in communications onemay want to adjust for transmission noise, in texts it may be desirable to allow common typingerrors. In multimedia one may want to adjust for lossy compressions, occlusions, scaling, a�netransformations or dimension loss.The earliest and best known distance functions are Levenshtein's edit distance [19] and the Hammingdistance. Let n be the text length andm the pattern length. Lowrance andWagner [20, 24] proposedan O(nm) dynamic programming algorithm for the extended edit distance problem. In [13, 17, 18]O(kn) algorithms are given for the edit distance with only k allowed edit operations. Recently, Coleand Hariharan [10] presented an O(nk4=m +n+m) algorithm for this problem. Amir, Lewensteinand Porat [6] presented faster algorithms for the Hamming distance case.Both above paradigms have an important trait in common { matching is dependent on the alphabetsymbols in the respective pattern and text locations. In this paper we propose a new paradigm {Structural Matching. In this model, the content of the pattern and text is not important. Whatis important is the structure of these strings. Certain areas in the text and pattern are identi�edand a \match" of the pattern in the text is a location where these special areas satisfy a requiredrelation. Structural Matching is motivated by two reasons. The �rst one is an \end" and the secondone is a \means".In molecular biology, it has long been a practice to consider special areas by their structure.Examples are repetitive genomic structures [14] such as tandem repeates, LINEs (Long InterspersedNuclear Sequences) and SINEs (Short Interspersed Nuclear Sequences) [15]. Many problems inbiology can be expressed as structural matching problems, thus streamlining and identifying thecombinatorial nature of the problem.The second reason is a functional one. The rich repertoire of relations between areas in the textand pattern can o�er interesting tools for the solution of hitherto unresolved problems. In thispaper we demonstrate such a use of structural matching for providing the fastest known algorithmfor swap matching.The Pattern Matching with Swaps problem (the Swap Matching problem, for short) requires �ndingall occurrences of a pattern of length m in a text of length n. The pattern is said to match the textat a given location i if adjacent pattern characters can be swapped, if necessary, so as to make thepattern identical to the substring of the text starting at location i. All the swaps are constrainedto be disjoint, i.e., each character is involved in at most one swap.1



The importance of the swap matching problem lies in recent e�orts to understand the complexity ofvarious generalized pattern matching problems. Until recently there were no known upper boundsbetter than the naive O(nm) algorithm for the swap matching problem. Indeed, this problem wasdescribed in 1995 as one of the open problems in non-standard string matching [21].Amir et al [2] obtained the �rst non-trivial results on this problem. They showed that the case whenthe size of the alphabet set � exceeds 2 can be reduced to the case when it is exactly 2 with a timeoverhead of O(log2 �). (The reduction overhead was reduced to O(log �) in the journal version [1].)They then showed how to solve the problem for alphabet sets of size 2 in time O(nm1=3 logm),which is the best deterministic time bound known to date. Amir et al. [5] also give certain specialcases for which O(mpolylog(m)) time can be obtained. However, these cases are rather restrictive.Cole and Hariharan [9] give a randomized algorithm that solves the swap matching problem over abinary alphabet in time O(n logn).In this paper we de�ne a structural matching problem { the Overlap (Parity) Matching Problem {as follows.INPUT: Text T of length n with marked intervals (substrings), and pattern P of length m withmarked intervals (substrings).OUTPUT: The text locations ` for which all overlaps of the marked intervals of T and markedintervals of P have even-length overlap.We present a deterministic algorithm that solves the overlap matching problem in time O(n logm).We then reduce the swap matching problem over binary alphabet to the overlap parity problem.Coupled with the alphabet reduction of [1, 9] it gives an algorithm for swap matching over generalalphabet whose running time is O(n logm log �).There are three main contributions in this paper.1. The introduction of a new model in pattern matching, that of structural matching.2. An e�cient solution of the overlap matching problem.3. The surprising time complexity of O(n logm) for solving the swap matching problem overbinary alphabets. Until recently it was open whether the problem had a o(nm) solution.Paper organization. This paper is organized in the following way. In section 2 we give basicde�nitions. In sections 3, 4, 5 and 6 we solve the overlap matching problem. In section 7 we de�nethe swap matching problem. In section 8 we prove a key lemma and show how to utilize this lemmain order to reduce swap matching to overlap matching.2 Problem De�nitionConsider a linear structure composed of contiguous units, for short a segment, e.g. an array. Wesay that a segment can be marked or unmarked. A structural string is a concatenation of markedand unmarked segments.Overlap Matching is de�ned as follows: 2



Input: A structural string, P , which we will call the pattern, of length m units (i.e. the sum ofthe segment lengths), and a structural string, T , which we call the text, of length n � m units.Output: All text locations k, where, when P is aligned to start at k, each pair of marked textsegment-marked pattern segment that overlap have even-length overlap.Alternatively, we can replace the even-length overlap requirement with an odd-length overlap re-quirement. Since this problem can be reduced to the even-length case without much di�culty, wewill only consider the even-length case.Another way to visualize the pattern and the text is as regular strings partitioned into "segments"with several segments marked. Thus we can consider P to be p1p2:::pm and T to be t1t2:::tn, theusual way of viewing a pattern and a text in string matching. However, it must be noted thatthe Overlap Matching problem is a structural problem and not a contextual problem, whereas, theproblems in string matching are contextual problems and not structural. Therefore, even thoughwe use the standard string matching notation for P and T the content of the elements is irrelevantto the problem.3 Algorithm Outline for Overlap MatchingIn the problem we desire only even-length overlap of marked segments. In other words, there is amatch at a text location i� there is no odd-length overlap of any of the pairs of marked segments.This overlap parity property allows us to consider pairs of marked segments separately. As soonas a pair is found with odd-length overlap, it immediately leads to the conclusion that there is nomatch in that location.The main idea of the algorithm is to separate the marked segments of the text and pattern intoa small number of groups. In each of these groups it will be possible to check for the overlapparity property in time O(n logm) using polynomial multiplications (which can be done in timeO(n logm) using FFT in a model with word length m bits). In the following sections we handlethe di�erent cases. Some of these cases necessitate new and creative uses of convolutions.3.1 Grouping Text Segments by Parity of Starting and Ending LocationIt will be important for us to know whether the marked segment we are dealing with starts at an oddor even text location. We also would like to know whether it ends at an odd or even text location.Consequently, we de�ne new texts where each text has exactly those marked segments of a givenstart and end parity, with all other text elements de�ned as � (don't care) and never contribute anerror. (In the polynomial multiplication there will always be a 0 in these text locations.)De�nition: T oo is a string of length n where for every location i, if ti is in a marked segmentwhose �rst element is in an odd location and whose last element is in an odd location, T oo[i] = 1.In all other locations j, T oo[j] = �.In a similar fashion de�ne T oe; T eo; T ee. 3
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3 12 231 7 10 15 21 26 28Figure 1: An example text.T oo = ��11111�������1111111�������T ee = ���������111����������������T oe = ����������������������1111��T eo = ����������������������������.Note that the segments of T oo are exactly the marked segments of T that start and end at anodd location. Thus, it is clear that in every location where none of the above four text strings(T oo; T oe; T eo; T ee) violate the parity property there is a match.3.2 Grouping the Pattern SegmentsThe pattern segments are de�ned in exactly the same way as the text segments and we would liketo group them in the same way. However, there is a di�culty here in \nailing down" the parity of alocation, since the pattern is shifted and compared to every text location. However, since the onlyproperty we have used in our grouping was the parity of the text location, it is clear that in all thepattern alignments that start in odd locations, the parity of the start and end segment locationswill be the same. Similarly, these parities will be the same for all pattern alignments that start ineven text locations.Thus we limit ourselves to two cases. The Odd Result Case and the Even Result Case. The OddResult case is simply the pattern alignments starting in odd text locations. The Even Result caseis pattern alignments starting in even text locations.When we �x an alignment result case it is possible to de�ne the parity of the starting andending locations of each pattern segment. Thus we can get, for the odd result case, patternsPOoo; POoe; POeo and POee. Similarly, for the even result case we consider patterns PEoo; PEoe; PEeoand PEee. We are now ready for the algorithm.begin Algorithmfor X = O;E do:for ti = o; e dofor tj = o; e dofor pi = o; e dofor pi = o; e docheck Odd Overlap property for T ti;tj and PXpi;pjf Note that when X = O we only consider the results in the odd text locationsand when X = E we only consider the results in the even text locations. gend AlgorithmIn the subsequent sections we will show how to implement the check for odd-length overlap (the4



forbidden property) for each of the cases in time O(n logm). The intrepid reader will realize thatthere are 32 cases to consider. Don't panic! Because of symmetry reasons, there are only threecases we need to describe. All others are similar.The cases we describe are the following. First �x the result parity to the Odd Result case. It isclear that the the Even Result case is symmetric. Since we don't need the X parameter in thealgorithm, we will henceforth ignore it for the sake of a simpler notation. We are now down to thecombinations T ti;tj and P pi;pj. This gives us 16 cases. We will handle separately only the followingthree types of cases:1. T ti;tj and P pi;pj where either ti = pi or tj = pj. (This type covers 12 cases.) These situationsare handled in section 4.2. T ti;tj and P pi;pj where ti; tj = oe and pi; pj = eo; or where ti; tj = eo and pi; pj = oe. Thesecases are handled in section 5.3. T ti;tj and P pi;pj where ti; tj = oo and pi; pj = ee; or where ti; tj = ee and pi; pj = oo. Thesecases are handled in section 6.4 Segments with Equal Parity StartConsider the case T ti;tj and P pi;pj where ti = pi.Observation 1 : For every two segments, St in T ti;tj , starting at location x and Sp in P pi;pj,starting at location y, jx� yj is always even. See all possibilities in �gure 2 below.
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Figure 2: The cases of both text and pattern segments starting in locations with the same parity.We are interested in the length of the segment overlaps (the shaded areas in �gure 2). A segmentoverlap has odd length i� the property of lemma 3 holds. We now show a convolution for whichthe resulting value at location i is 0 i� there does not exists an odd-length segment overlap.The Convolution: Construct a pattern P 0 = p01 � � � p0m wherep0i = � 0; if P pi;pj[i] = �;1; otherwise. :Construct a text T 0 = t01 � � � t0n where every � in T ti;tj is replaced by 0; and every segment in T ti;tjis replaced by an alternating segment of 1 and �1, starting at 1.It is clear that for all cases where the starting location of a pattern segment is smaller than thestarting location of a text segment the result of the convolution will be 1 if the length of the overlap5



is odd and 0 if it is even (since every text segment starts with a 1 and then alternates between �1and 1). Because of observation 1, even when the text segment starts at a smaller location than thepattern segment, the di�erence between the starting locations has even length. Therefore in thearea of the overlap, the text starts with a 1 and alternates between �1 and 1. Thus the convolutiongives us the desired result.This solves all eight cases of T ti;tj and P pi;pj where ti = pi. For the additional four cases wheretj = pj simply reverse the text and pattern and achieve the case considered above.5 The Odd-Even Even-Odd SegmentsConsider the case T oe and P eo (the case of T eo and P oe is symmetric).Terminology: Let St be a text segment whose starting location is s1 and whose ending locationis f1. Let Sp be a pattern segment being compared to the text at starting position s2 and endingposition f2. If s1 < s2 < f2 < f1 then we say that St contains Sp. If s2 < s1 < f1 < f2 then wesay that Sp contains St. If s1 < s2 < f1 < f2 then we say that St has a left overlap with Sp. Ifs2 < s1 < f2 < f1 then we say that St has a right overlap with Sp. We will sometimes refer to aleft or right overlap as a side overlap.Observation 2 : For every two segments, St in T oe and Sp in P eo if either Sp is contained in Stor St is contained in Sp then the overlap is of even length. If the overlap is a left overlap or rightoverlap then it is of odd length. See all possibilities in �gure 3 below.
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odd even oddFigure 3: The cases where the text segment starts at an odd location and ends at an even location;the pattern segment does the opposite.The correctness of the observation is immediate. Segments of these types have even length thus ifone contains the other the overlap is necessarily of even length. Conversely, in case of a left or rightoverlap then the overlap starting and ending locations have the same parity, making the length ofthe overlap odd.We will now show a convolution where segments that are contained in each other contribute a 0,and side overlaps contribute positive numbers. This convolution will be more complex than theprevious one. The reason is that there is some inherent relation between text segments that startwithin a pattern segment. Likewise, there is a commonality between text segments that end withina pattern segment. Our problem is that we need to di�erentiate between cases that are naturallyeasier handled together.Consider the following case. Let St be a segment of T oe starting at text location s1 and havinglength `t. Assume that the pattern P eo of length `p is aligned to start at the text location such6



that the �rst symbol of segment Sp occurs at location s2. Further assume that one of the segmentsis contained in the other. If we replace St by s11`t�2� s1 and Sp by s21`p�2� s2 (and � by 0) thenmultiplication of these two segments will yield k�2, where k is the size of the overlap. See �gure 4.
l -21 l -22

S2   1 . . 1   1  1  . . . . . 1  1   1 . . . 1 -S2

S1  1  1  1  . . . 1  1 -S1

S2  1  1  1  . . . 1  1 -S2

S1  1  1 . . . 1  1  1 . . .  1  1  . . . 1  1 -S1

Multiplication: S +l -2-S =l -2                               S +l -2-S =l -21 1 1 22221Figure 4: Containment cases for text T oe and pattern P oe.Conversely, if there is a side overlap of St with Sp then the multiplication will yield max(s1; s2)�min(s1; s2) + k � 2, where k is the size of the overlap. See �gure 5.
Multiplication: S +l -2-S                         S +l -2-S1 1

S1  1  1  1  . . . 1  1 -S1

S2  1 . . . 1   1  1  1 -S2 S2  1  1  1  . . . 1  1 -S2

S1  1 . . .  1  1  1  1 -S1

2 2

1l -2 2l -2

21Figure 5: Edge intersection cases for text T oe and pattern P eo.If we could solve two problems, we are done.1. Remove the size of the overlap �2 from the result. (This will make the multiplication resultbe 0 when all overlaps are containments.)2. Be able to actually replace every segment by its starting point, 1's and the negation ofits starting point. (This will make the multiplication result positive when there exist sideoverlaps.) Being able to insert the starting point of the segment for the sake of multiplicationis not at all simple to do since the same segment has n�m di�erent starting points!However, if the above two problems could be solved by a convolution, then the result would be 0i� all overlaps are containments i� all overlaps have even length (by observation 2).Solution 1. The �rst problem can be easily solved. The convolution below provides, for every textlocation i, the sum Pj(kj � 2), where kj are all the overlap lengths. All that is necessary, then, isto subtract the result of this convolution from the value obtained for each text location.The Overlap Length Convolution: Replace every segment of length ` in both text and pattern by01`�20. Replace all �'s by 0's. Multiply.Solution 2. The starting locations of all text segments are known in advance and thus thesubstitution of the segment by s11`t�2 � s1 can be done in linear time for the entire text. Thepattern segment is problematic since it has n � m di�erent alignments. Therefore, we treat thepattern segments as if they all start relative to location 1.The Zero Containment Convolution: Replace every segment of length `t starting in location s1 ofthe text by s11`t�2� s1. Replace every segment of length `p starting at location sp1 of the pattern7



by sp11`p�2 � sp1. Replace all �'s by 0's. Multiply.The problem is that now the result of the multiplication of side overlaps (after subtraction of theoverlap length convolution) may sometimes be positive and sometimes be negative. This may causethe zero containment convolution result to be a 0 even for overlaps that are not contained, i.e. ofodd length. We will then not be able to distinguish between them and the cases of all overlapsbeing containments.We now show how to adjust the zero containment convolution to give the desired result. The zerocontainment convolution (after subtracting the result of the overlap length convolution) causes allcontained segments to give the result 0. Thus in location i0 we get the valueX̀2A sp` �Xk2B spk +Xi2C si �Xj2D sj ;where A is the the set of pattern segments that have text segments overlapping them from the left,B is the the set of pattern segments that have text segments overlapping them from the right, Cis the set of text segments that have right overlap with pattern segments and D is the set of textsegments that have left overlap with pattern segments.The problem is that the result we really want isX̀2A s` �Xk2B sk +Xi2C si �Xj2D sj :In other words, we want the starting positions of the aligned pattern segments, rather than theirstarting positions relative to location 1. However, note that for location i0, sx = i0 + spx. Thismeans that the value we want in location i0 isX̀2A(sp` + i0)�Xk2B(spk + i0) +Xi2C si �Xj2D sjThis equals X̀2A sp` �Xk2B spk +Xi2C si �Xj2D sj + X̀2A i0 �Xk2B i0:We conclude that the desired value will be obtained if we add to the result of the zero containmentconvolution at every location i0 the value P`2A i0�Pk2B i0. These values can be obtained by thefollowing convolution.The Shifting Convolution: Replace every pattern segment of length `p by 10`p�2� 1 and every textsegment of length `t by 01`t�20. Replace every � by 0. Multiply.It is easy to see that the result of this convolution in location i0 is P`2A i0 �Pk2B i0.De�nition: Let T be a text with segments St1; : : : ; Stx starting at locations s1; : : : ; sx, respectively.Let P be a pattern such that, when placed at location i0, its segments Sp1; : : : ; Spy start at locationsv1; : : : ; vy. Let fsi1; : : : ; sizg be the starting locations of text segments that have a left overlapwith pattern segments, and let fvj1; : : : ; vjzg be the starting location of the corresponding patternsegments. Similarly let fsk1; : : : ; skwg be the starting locations of text segments that have a rightoverlap with pattern segments, and fv`1; : : : ; v`wg be the starting locations of the correspondingpattern segments. 8



The external side length of the pattern at location i0 isyXr=1(vir � sjr) + zXr=1(skr � v`r):Note that containments do not contribute to the external side length. See �gure 6 for an illustration.
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431 s2Figure 6: The sum of the shaded areas is the external side length:(v1 � s1) + (v2 � s2) + (v3 � s4) + (s2 � v1):Note that we are not counting external lengths of containments.Lemma 1 It is possible in time O(n logm) to provide, for every text location i, a value that is 0if all overlaps of the pattern and text segments are containments, and positive otherwise.Proof: Add the results of the shifting convolution and the zero containment convolution andsubtract from it the result of the overlap length convolution. We get the external side length whichis 0 if all overlaps are containments and positive, otherwise. ut6 The Odd-Odd Even-Even SegmentsConsider the case T oo and P ee (the case of T ee and P oo is symmetric).Observation 3 : For every two segments, St in T oo and Sp in P ee if either Sp is contained in Stor St is contained in Sp then the overlap is of odd length. If the overlap is a left overlap or rightoverlap then it is of even length. See all possibilities in �gure 7 below.
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oFigure 7: Every containment has odd length; every side overlap has even length.The correctness of the observation is immediate. Segments of these types have odd lengths thus ifone contains the other the overlap is necessarily of odd length. Conversely, in case of a left or rightoverlap then the overlap starting and ending locations have the opposite parity, making the lengthof the overlap even. 9



De�nition: Let T be a text with segments St1; : : : ; Stx starting at locations s1; : : : ; sx, respectively.Let P be a pattern such that, when placed at location i0, its segments Sp1; : : : ; Spy start at locationsv1; : : : ; vy. Let fsi1; : : : ; sizg be the starting locations of text segments that have a left overlap withpattern segments or that contain a pattern segments, and let fvj1; : : : ; vjzg be the starting locationof the corresponding pattern segments. Similarly let fsk1; : : : ; skwg be the starting locations oftext segments that have a right overlap with pattern segments or that are contained in patternsegments, and fv`1; : : : ; v`wg be the starting locations of the corresponding pattern segments.The external overlap length of the pattern at location i0 isyXr=1(vir � sjr) + zXr=1(skr � v`r):Note that unlike the external side length, containments also contribute to the external overlaplength. See �gure 8 for an illustration.
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431 s2Figure 8: The sum of the shaded areas is the external overlap length:(v1 � s1) + (v2 � s2) + (v3 � s4) + (s2 � v1) + (s3 � v2):Note that (s3 � v2) + (v3 � s4) would not be counted in the external side length.We need a method to indicate whether there exist any overlaps. We will show that the externaloverlap length can be calculated by two convolutions. Since we know from section 5 how to computethe external side length, it su�ces to see the di�erence between these two values. If it is 0 then thereare no containments (and therefore no odd-length overlaps), otherwise there are containments.The sum of the following two convolutions gives the external overlap length.The External Contained and Right Length Convolution: Replace every segment of length ` in thepattern by 0123 � � � `� 1, and every segment of length ` in the text by 10`�1. Replace every � by0. Multiply.The resulting value at every location i0 is precisely the external length of the right overlaps and ofthe text segments contained in pattern segment overlaps. Left overlaps and text containing patterngive a 0. The next convolution computes precisely the remaining external lengths.The External Containing and Left Length Convolution: Replace every segment of length ` in thetext by 0123 � � � `� 1, and every segment of length ` in the pattern by 10`�1. Replace every � by0. Multiply.Adding the results of the above two convolutions gives the external overlap length.Lemma 2 It is possible in time O(n logm) to provide, for every text location i, a value that is 0if there are no containments either of text in pattern segments or of pattern in text segments, andpositive otherwise. 10



Proof: Subtract the external side length from the external overlap length. If there is a containment,we will get a positive number, otherwise we get 0. ut7 Swap MatchingDe�nition: Let S = s1 : : : sn be a string over alphabet �. A swap permutation for S is a permu-tation � : f1; : : : ; ng ! f1; : : : ; ng such that1. if �(i) = j then �(j) = i (characters are swapped).2. for all i, �(i) 2 fi� 1; i; i+ 1g (only adjacent characters are swapped).3. if �(i) 6= i then s�(i) 6= si (identical characters are not swapped).For a given string S = s1 : : : sn and swap permutation � for S we denote �(S) = s�(1)s�(2) : : : s�(n).We call �(S) a swapped version of S.For pattern P = p1 : : : pm and text T = t1 : : : tn, we say that P swap matches at location i ifthere exists a swapped version P 0 of P that matches T starting at location i, i.e. p0j = ti+j�1 forj = 1; : : : ;m.The Swap Matching Problem is the following:INPUT: Pattern P = p1 : : : pm and text T = t1 : : : tn over alphabet �.OUTPUT: All locations i where P swap matches T .We note that the de�nition in [2] and the papers that followed is slightly di�erent, allowing theswaps in the text rather than the pattern. However, it follows from Lemma 1 in [2] that bothversions are of the same time complexity.7.1 Reducing Large Alphabets to Binary AlphabetsIn [2] it was shown how to reduce the swap matching problem over unbounded alphabets to theproblem over a two letter alphabet with an O(log2 j�j) multiplicative overhead. Here we outlinea reduction requiring only an O(log j�j) factor detailed in [1]. Another unpublished O(log j�j)reduction appears in [9].De�nition: A (�; 3)-universal set is a set S = f�1; : : : ; �kg of characteristic functions, �j : � !f0; 1g such that for every a; b; c 2 �, and for each of the eight possible combinations of 0�1s, thereexists �j such that �j(a); �j(b); �j(c) equals this combination.We extend the de�nition of the functions �j to strings in the usual manner, i.e. for S = s1 : : : sn,�j(S) = �j(s1)�j(s2) : : : �j(sn).Theorem 1 [2] Let P be a pattern, T a text, both over an arbitrary alphabet �, and let S =f�1; : : : ; �kg be a (�; 3)-universal set. P swap matches T at location i i� for all j, �j(P ) swapmatches �j(T ) at location i. 11



In [23] it was shown how to construct (�; 3)-universal set of cardinality k = O(log j�j) yielding thefollowing.Corollary 1 A solution of the Swap Matching problem over alphabet fa; bg of time O(f(n;m))implies a solution of time O(log j�jf(n;m)) over a general alphabet �.8 Reducing Swap Matching to Overlap MatchingFollowing the reduction to a binary alphabet, we assume that the text and the pattern both haveonly a's and b's. An alternating segment of a string S 2 fa; bg� is a substring alternating betweenas and bs. A maximal alternating segment, or segment for short, is an alternating segment such thatthe character to the left of the leftmost character x in the alternating segment, if any, is identicalto x, and similarly, the character to the right of the rightmost character y, if any, is identical to y.We now show the key property necessary to reduce swap matching to overlap matching. To thisend we partition the text and pattern into segments.Lemma 3 The pattern does not match in a particular alignment if and only if there exists asegment A in the text and a segment B in the pattern such that (1) the characters of A and Bmisalign in the overlap and (2) the overlap is of odd-length.Proof. First, we show the if part. For any overlap of segments that is of even length the overlappingportions of A and B can be made identical by swapping, if necessary. Note that these swaps staywithin the overlapping portion so other segments are not a�ected. If the overlap is odd and theoverlapping portions match exactly then nothing needs to be done. So clearly, if the pattern doesnot match it must be the case that there exists a segment A in the text and a segment B in thepattern that overlap with odd-length overlap and with misaligning characters in the overlap.Consider the only if part now. Suppose A and B overlap such that the overlap is of odd length and,without loss of generality, the overlap has u = (ab)�a in the text and v = (ba)�b in the pattern.Then, for a match to occur, either the leftmost b in v must be swapped with the character to theleft or the rightmost b in v must be swapped with the character to the right.Clearly, the portion of B overlapping A cannot be a pre�x of B for the above swap to be e�ective(the character preceding B, if any, is a b). It follows that the portion of B overlapping A must bea pre�x of A. Once again the above swap is ine�ective (the character preceding A is an a). Thusit follows that the pattern does not match at this alignment. 2Following Lemma 3, we would like to check each location whether there are overlapping segmentswith properties (1) and (2). To this end we will separate the segments of the text and pattern intotwo groups each, similar to what we did in the algorithm for the overlap matching.We create these groups in such a way that the characters always misalign (property (1)) in thecomparison of group vs. group. Moreover, the comparisons cover all possible misalignments ofoverlapping segments. Therefore, the necessary comparison is to check that the length of theoverlap is odd (property (2)). We now describe the grouping.12



8.1 Odd a and Even a Text SegmentsThe �rst two categories of text segments we consider are the Even a segments, where all the a'sfall on even text locations, and the Odd a segments, where all the a's fall on odd text locations.We construct two new text (structural) strings, Todd�a and Teven�a, each of them having length n.Todd�a is a text whose marked segments are all the odd a segments of T in their exact locations.The text locations where there are even a segments are marked segments. Similarly, Teven�a isthe (structural) text string whose marked segments are all the even a segments of T in their exactlocations and the other segments are unmarked. In fact Teven�a and Todd�a complement eachother in the sense that they are exactly the same strings where each marked segment in one is theunmarked in the other.Example: Let T = ababbbaaabababbaababbaaabababa.The segments are: abab b ba a ababab ba abab ba a abababaThe odd a segments are the �rst, third, �fth, seventh, and ninth. ThusTodd�a = marked length 4, unmarked length 1, marked length 2, unmarked length 1, marked length6, unmarked length 2, marked length 4, unmarked length 2, marked length 1, unmarked length 7.8.2 Odd a and Even a Pattern SegmentsThe pattern segments are de�ned in exactly the same way as the text segments and we would liketo group them in the same way. However, as in the overlap matching, the problem is to \nail down"the parity of a location, since the pattern is shifted and compared to every text location. However,since the only property we have used in our grouping was the parity of the text location, it is clearthat in all the pattern alignments that start in odd locations, the parity of the a occurrences willbe the same. Similarly, these parities will be the same for all pattern alignments that start in eventext locations. Thus, we de�ne Podd�a and Peven�a in the same way we de�ned Todd�a and Teven�a.The following lemma shows how to utilize the reduction to overlap matching and follows directlyfrom the discussion.Lemma 4 P swap matches at an odd location, 2i+ 1, of T i� Podd�a overlap matches Teven�a atlocation 2i+ 1 and Peven�a overlap matches Todd�a at location 2i+ 1.P swap matches at an even location, 2i, of T i� Podd�a overlap matches Todd�a at location 2i andPeven�a overlap matches Teven�a at location 2i.Therefore, for swap matching we can state the following.Theorem 2 Swap Matching can be solved in O(n logm log �) for a general alphabet �, where� = min(m; j�j).References[1] A. Amir, Y. Aumann, G. Landau, M. Lewenstein, and N. Lewenstein. Pattern matching with swaps.Submitted for publication.[2] A. Amir, Y. Aumann, G. Landau, M. Lewenstein, and N. Lewenstein. Pattern matching with swaps.Proc. 38th IEEE FOCS, pages 144{153, 1997. 13
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