
Hardness of Set Cover with Intersection 1V.S.Anil Kumar1, Sunil Arya2 and H.Ramesh31 MPI f�ur Informatik, Saarbr�ucken. kumar@mpi-sb.mpg.de2 Department of Computer Science, Hong Kong University of Science andTechnology. arya@cs.ust.hk3 Department of Computer Science and Automation, Indian Institute of Science,Bangalore. ramesh@csa.iisc.ernet.inAbstract. We consider a restricted version of the general Set Coveringproblem in which each set in the given set system intersects with anyother set in at most 1 element. We show that the Set Covering problemwith intersection 1 cannot be approximated within a o(log n) factor inrandom polynomial time unless NP � ZTIME(nO(log log n)). We alsoobserve that the main challenge in derandomizing this reduction lies in�nd a hitting set for large volume combinatorial rectangles satisfying cer-tain intersection properties. These properties are not satis�ed by currentmethods of hitting set construction.An example of a Set Covering problem with the intersection 1 property isthe problem of covering a given set of points in two or higher dimensionsusing straight lines; any two straight lines intersect in at most one point.The best approximation algorithm currently known for this problem hasan approximation factor of �(log n), and beating this bound seems hard.We observe that this problem is Max-SNP-Hard.1 IntroductionThe general Set Covering problem requires covering a given base set B of sizen using the fewest number of sets from a given collection of subsets of B. Thisis a classical NP-Complete problem and its instances arise in numerous diversesettings. Thus approximation algorithms which run in polynomial time are ofinterest.Johnson[Jo74] showed that the greedy algorithm for Set Cover gives anO(logn) approximation factor. Much later, following advances in Probabilis-tically Checkable Proofs [ALMSS92], Lund and Yannakakis [LY93] and Bellareet al. [BGLR93] showed that there exists a positive constant c such that theSet Covering problem cannot be approximated in polynomial time within ac logn factor unless NP � DTIME(nO(log logn)). Feige [F98] improved the ap-proximation threshold to (1� o(1)) logn, under the same assumption. Raz andSafra[RS97] and Arora and Sudan[AS97] then obtained improved Probabilisti-cally Checkable Proof Systems with sub-constant error probability; their workimplied that the Set Covering problem cannot be approximated within a c lognapproximation factor (for some constant c) unless NP = P .



Note that all the above hardness results are for general instances of the SetCovering problem and do not hold for instances when the intersection of any pairof sets in the given collection is guaranteed to be at most 1. Our motivation forconsidering this restriction to intersection 1 arose from the following geometricinstance of the Set Covering problem.Given a collection of points and lines in a plane, consider the problem ofcovering the points with as few lines as possible. Megiddo and Tamir[MT82]showed that this problem is NP-Hard. Hassin and Megiddo[HM91] showed NP-Hardness even when the lines are axis-parallel but in 3D. The best approximationfactor known for this problem is �(logn). Improving this factor seems to behard, and this motivated our study of inapproximability for Set Covering withintersection 1. Note that any two lines intersect in at most 1 point.The problem of covering points with lines was in turn motivated by theproblem of covering a rectilinear polygon with holes using rectangles [Le87]. Thisproblem has applications in printing integrated circuits and image compression[CIK88].This problem is known to be Max-SNP-Hard even when the rectangles are con-strained to be axis-parallel. For this case, an O(plogn)-factor approximationalgorithm was obtained recently by Anil Kumar and Ramesh[AR99]. However,this algorithm does not extend to the case when the rectangles need not be axis-parallel. Getting a o(logn)-factor approximation algorithm for this case seemsto require solving the problem of covering points with arbitrary lines, though weare not sure of the exact nature of this relationship.Our Result. We show that there exists a constant c > 0 such that ap-proximating the Set Covering problem with intersection 1 to within a factor ofc logn in random polynomial time is possible only ifNP � ZTIME(nO(log log n))(where ZTIME(t) denotes the class of languages that have a probabilistic algo-rithm running in expected time t with zero error). We also give a sub-exponentialderandomization which shows that approximating the Set Covering problem withintersection 1 to within a factor of c lognlog log n in deterministic polynomial time ispossible only if NP � DTIME(2n1��), where � is any positive constant lessthan 12 .The starting point for our result above is the Lund-Yannakakis hardnessproof[LY93] for the general Set Covering problem. This proof uses an auxiliaryset system with certain properties. We show that this auxiliary set system nec-essarily leads to large intersection. We then replace this auxiliary set systemby another carefully chosen set system with additional properties and modifythe reduction appropriately to ensure that intersection sizes stay small. The keyfeatures of the new set system are partitions of the base set into several sets ofsmaller size (instead of just 2 sets as in the case of the Lund-Yannakakis systemor a constant number of sets as in Feige's system; small sets will lead to smallintersection) and several such partitions (so that sets which \access" the samepartition in the Lund-Yannakakis system and therefore have large intersectionnow \access" distinct partitions).We then show how the new set system above can be constructed in random-ized polynomial time and also how this randomized algorithm can be deran-



domized using conditional probabilities and appropriate estimators in O(2n1�� )time, where � is a positive constant. This leads to the two conditions above,namely, NP � DTIME(2n1��) (but for a hardness of O( lognlog logn )) and NP �ZTIME(nO(log logn)). A deterministic polynomial time construction of our newset system will lead to the quasi-NP-Hardness of approximating the Set Cover-ing problem with intersection 1 to within a factor of c logn, for some constantc > 0.While the Lund-Yannakakis set system can be constructed in deterministicpolynomial time using �-biased limited independence sample spaces, this doesnot seem to be true of our set system. One of the main bottlenecks in construct-ing our set system in deterministic polynomial time is the task of obtaining apolynomial size hitting set for Combinatorial Rectangles, with the hitting setsatisfying additional properties. One of these properties (the most importantone) is the following: if a hitting set point has the elements i; j among its coordi-nates, then no other hitting set point can have both i; j among its coordinates.The only known construction of a polynomial size hitting set for combinatorialrectangles is by Linial, Luby, Saks, and Zuckerman [LL+93] and is based onenumerating walks in a constant degree expander graph. As we show in thispaper, the hitting set obtained by [LL+93] does not satisfy the above propertyfor reasons that seem intrinsic to the use of constant degree expander graphs.We also note that if the proof systems for NP obtained by Raz and Safra[RS97]or Arora and Sudan[AS97] have an additional property then the condition NP �ZTIME(nO(log logn)) can be improved to NP = ZPP . Similarly, the statementthat approximating the Set Covering problem with intersection 1 to within afactor of c lognlog logn in deterministic polynomial time is possible only if NP �DTIME(2n1��) can be strengthened to approximation factor c logn instead ofc lognlog logn . The property needed of the proof systems is that the degree, i.e., thetotal number of random choices of the veri�er for which a particular question isasked of a particular prover, be O(n�), for some small enough constant value �.Currently, we are exploring whether this condition can be satis�ed by the aboveproof systems. The degree in
uences the number of partitions in our auxiliaryproof system and therefore needs to be small.The above proof of hardness for Set Covering with intersection 1 does notapply to the problem of covering points with lines, the original problem whichmotivated this paper; however, it does indicate that algorithms based on setcardinalities and small pairwise intersection alone are unlikely to give a o(logn)approximation factor for this problem.Further, our result shows that constant VC-dimension alone does not helpin getting a o(logn) approximation for the Set Covering problem. This is tobe contrasted with the result of Br�onnimann and Goodrich[BG94] which showsthat if the VC-dimension is a constant and an O( 1� ) sized (weighted) �-net canbe constructed in polynomial time, then a constant factor approximation can beobtained.Finally, for the problem of covering points with lines, we observe that theNP-Hardness proof of Megiddo and Tamir[MT82] can be easily extended to a



Max-SNP-Hardness proof. We also show that the obvious linear program for thisproblem must have an integrality gap of 2. In addition, we give an example whichcould possibly show an integrality gap of �(logn); however, we have been unableto prove such a gap. We believe that a good understanding of this example wouldreveal whether or not the linear program lower bound is strong enough and ifnot, what other lower bounds one could use.The paper is organized as follows. Section 2 will give an overview of the Lund-Yannakakis reduction. Section 3 shows why the Lund-Yannakakis proof doesnot show hardness of Set Covering when the intersection is constrained to be 1.Section 4 describes the reduction to Set Covering with intersection 1. This sectiondescribes a new set system we need to obtain in order to perform the reduction.Section 5 will sketch the randomized construction of this set system. Section6 sketches the sub-exponential time derandomization. Section 7 describes theconnection to hitting combinatorial rectangles required to construct the aboveset system in polynomial time. Section 8 gives a sketch of the Max-SNP-Hardnessproof for covering points with lines and shows an example which may have a largeintegrality gap. Section 9 enumerates several interesting open problems whicharise from this paper. Section 13 in the Appendix shows how the conditionNP �ZTIME(nO(log logn)) can be improved to NP = ZPP if the Raz-Safra[RS97]or the Arora-Sudan[AS97] proof system has a certain property.2 Preliminaries: The Lund-Yannakakis ReductionIn this section, we sketch the version of the Lund-Yannakakis reduction describedby Arora and Lund [AL95]. The reduction starts with a 2-Prover 1-Round proofsystem for Max-3SAT(5) which has inverse polylogarithmic error probability,uses O(logn log logn) randomness, and has O(log logn) answer size. Here n isthe size of the Max-3SAT(5) formula F . Arora and Lund[AL95] abstract thisproof system into the following Label Cover problem.The Label Cover Problem. A bipartite graph G having n0 + n0 vertices andedge set E is given, where n0 = nO(log log n). All vertices have the same degreedeg, which is polylogarithmic in n. For each edge e 2 E, a partial functionfe : [d] ! [d0] is also given, where d � d0, and d; d0 are polylogarithmic in n.The aim is to assign to each vertex on the left, a label in the range 1 : : : d, andto each vertex on the right, a label in the range 1 : : : d0, so as to maximize thenumber of edges e = (u; v) satisfying fe(label(u)) = label(v). Edge e = (u; v) issaid to be satis�ed by a labelling if the labelling satis�es fe(label(u)) = label(v).The 2-Prover 1-Round proof system mentioned above ensures that either allthe edges in G are satis�ed by some labelling or that no labelling satis�es morethan a 1log3 n fraction of the edges, depending upon whether or not the Max-3SAT(5) formula F is satis�able. Next, in time polynomial in the size of G,an instance SC of the Set Covering problem is obtained from this Label Coverproblem LC with the following properties: if there exists a labelling satisfyingall edges in G then there is a set cover of size 2n0, and if no labelling satis�es



more than a 1log3 n fraction of the edges then the smallest set cover has size
(2n0 logn0). The base set in SC will have size polynomial in n0. It follows thatthe Set Covering problem cannot be approximated to a logarithmic factor of thebase set size unless NP � DTIME(nO(log logn)).Improving this condition to NP = P requires using a stronger multi-proverproof system [RS97,AS97] which has a constant number of provers (more than2), O(logn) randomness, O(log logn) answer sizes, and inverse polylogarithmicerror probability. The reduction from such a proof system to the Set Coveringproblem is similar to the reduction from the Label Cover to the Set Coveringproblem mentioned above, with a modi�cation needed to handle more than 2provers (this modi�cation is described in [BGLR93]).In this abstract, we will only describe the reduction from Label Cover tothe Set Covering problem and show how we can modify this reduction to holdfor the case of intersection 1. This will show that Set Covering problem withintersection 1 cannot be approximated to a logarithmic factor unless NP �ZTIME(nO(log logn)). The multi-prover proof system of the previous paragraphwith an additional condition can strengthen the latter condition to NP = ZPP ;this is described in the appendix.We now brie
y sketch the reduction from an instance LC of Label Cover toan instance SC of the Set Covering problem.2.1 Label Cover to Set CoverThe following auxiliary set system given by a base set N = f1 : : : n0g and itspartitions is needed.The Auxiliary System of Partitions. Consider d0 distinct partitions of Ninto two sets each, with the partitions satisfying the following property: if atmost logn02 sets in all are chosen from the various partitions with no two setscoming from the same partition, then the union of these sets does not coverN . Partitions with the above properties can be constructed deterministically inpolynomial time [AGHP92,NSS95]. Let P 1i ; P 2i respectively denote the �rst andsecond sets in the ith partition. We describe the construction of SC next.Using P ji s to construct SC. The base set B for SC is de�ned to bef(e; i)je 2 E; 1 � i � n0g. The collection C of subsets of B contains a setC(v; a), for each vertex v and each possible label a with which v can be labelled.If v is a vertex on the left, then for each a, 1 � a � d, C(v; a) is de�ned asf(e; i)je incident on v ^ i 2 P 1fe(a)g. And if v is a vertex on the right, then foreach a, 1 � a � d0, C(v; a) is de�ned as f(e; i)je incident on v ^ i 2 P 2a g.That SC satis�es the required conditions can be seen from the following facts.1. If there exists a vertex labelling which satis�es all the edges, then B can becovered by just the sets C(v; a) where a is the label given to v. Thus the sizeof the optimum cover is 2n0 in this case.2. If the total number of sets in the optimum set cover is at most some suitableconstant times n0 logn0, then at least a constant fraction of the edges e =



(u; v) have the property that the number of sets of the form C(u; �) plus thenumber of sets of the form C(v; �) in the optimum set cover is at most logn02 .Then, for each such edge e, there must exist a label a such that C(u; a) andC(v; fe(a)) are both in this optimum cover. It can be easily seen that choosinga label uniformly at random from these sets for each vertex implies that thereexists a labelling of the vertices which satis�es an 
( 1log2 n0 ) � 1log3 n fractionof the edges.3 SC has Large IntersectionThere are two reasons why sets in the collection C in SC have large intersections.Parts in the Partitions are Large. The �rst and obvious reason is thatthe sets in each partition in the auxiliary system of partitions are large andcould have size n02 ; therefore, two sets in distinct partitions could have 
(n0)intersection. This could lead to sets C(v; a) and C(v; b) having 
(n0) commonelements of the form (e; i), for some e incident on v.Clearly, the solution to this problem is to work with an auxiliary systemof partitions where each partition is a partition into not just 2 large sets, butinto several small sets. The problem remains if we form only a constant numberof parts, as in [F98]. We choose to partition into (n0)1�� sets, where � is somenon-zero constant to be �xed later. This ensures that each set in each partitionhas size �((n0)� polylog(n)) and that any two such sets have O(1) intersection.However, smaller set size leads to other problems which we shall describe shortly.Functions fe() are not 1-1. Suppose we work with smaller set sizes asabove. Then consider the sets C(v; a) and C(v; b), where v is a vertex on the leftand a; b are labels with the following property: for some edge e incident on v,fe(a) = fe(b). Then each element (e; �) which appears in C(v; a) will also appearin C(v; b), leading to an intersection size of up to 
((n0)� �deg), where deg is thedegree of v in G. This is a more serious problem. Our solution to this problem isto ensure that sets C(v; a) and C(v; b) are constructed using distinct partitionsin the auxiliary system of partitions.Next, we describe how to modify the auxiliary system of partitions and theconstruction of SC in accordance with the above.4 LC to SC with Intersection 1Our new auxiliary system of partitions P will have d0 � (deg + 1) � d partitions,where deg is the degree of any vertex in G. Each partition has m = (n0)1��parts, for some � > 0 to be determined. These partitions are organized into d0groups, each containing (deg+1) � d partitions. Each group is further organizedinto deg + 1 subgroups, each containing d partitions. The �rst m=2 sets in eachpartition comprise its left half and the last m=2 its right half.Let Pg;s;p denote the pth partition in the sth subgroup of the gth group andlet Pg;s;p;k denote the kth set (i.e., part) in this partition. Let Bk denote the set



[g;s;pPg;s;p;k if 1 � k � m=2, and the set [g;sPg;s;1;k , if m=2 < k � m. We alsorefer to Bk as the kth column of P .We need the following properties to be satis�ed by the system of partitionsP .1. The right sides of all partitions within a subgroup are identical, i.e., Pg;s;p;k =Pg;s;1;k, for every k > m=2.2. P (g; s; p; k) \ P (g0; s0; p0; k) = � unless either g = g0; s = s0; p = p0, or,k > m=2 and g = g0; s = s0. In other words, no element appears twicewithin a column, modulo the fact that the right sides of partitions within asubgroup are identical.3. jBk \Bk0 j � 1 for all k; k0, 1 � k; k0 � m, k 6= k0.4. Suppose N is covered using at most �m logn0 sets in all, disallowing sets onthe right sides of those partitions which are not the �rst in their respectivesubgroups. Then there must be a partition in some subgroup s such that thenumber of sets chosen from the left side of this partition plus the number ofsets chosen from right side of the �rst partition in s together sum to at least34m.� and � are constants which will be �xed later. Let Ap;k = [g;sPg;s;p;k,for each p; k, 1 � p � d; 1 � k � m=2. Let Dg;k = [sPg;s;1;k, for each g; k,1 � g � d0, m=2 + 1 � k � m. Property 2 above implies that:5. jAp;k \ Ap0;kj = 0 for all p 6= p0, where 1 � p; p0 � d and k � m=2.6. jDg;k \Dg0;kj = 0 for all g 6= g0, where 1 � g; g0 � d0 and k > m=2.We will describe how to obtain a system of partitions P satisfying theseproperties in Section 5, Section 6, and Section 7. First, we show how a setsystem SC with intersection 1 can be constructed using P .4.1 Using P to construct SCThe base set B for SC is de�ned to be f(e; i)je 2 E; 1 � i � n0g as before. Thisset has size (n0)2 � deg = O((n0)2 polylog(n)).The collection C of subsets of B contains m=2 sets C1(v; a) : : : Cm=2(v; a),for each vertex v on the left (in graph G) and each possible label a with which vcan be labelled. In addition, it contains m=2 sets Cm=2+1(v; a) : : : Cm(v; a), foreach vertex v on the right in G and each possible label a with which v can belabelled. These sets are de�ned as follows.Let Ev denote the set of edges incident on v in G. We edge-colour G usingdeg + 1 colours. Let col(e) be the colour given to edge e in this edge colouring.For a vertex v on the left side, and any number k between 1 and m=2, Ck(v; a) =[e2Evf(e; i)ji 2 Pfe(a);col(e);a;kg. For a vertex v on the right side, and any numberk between m=2 + 1 and m, Ck(v; a) = [e2Evf(e; i)ji 2 Pa;col(e);1;kg.We now give the following lemmas which state that the set system SC hasintersection 1 and that it has a set cover of small size if and only if there exists away to label the vertices of G satisfying several edges simultaneously. The proofsare deferred to Section 10 in the Appendix.



Lemma 1. The intersection of any two distinct sets Ck(v; a) and Ck0 (w; b) isat most 1.Lemma 2. If there exists a way of labelling vertices of G satisfying all its edgesthen there exists a collection of n0m sets in C which covers B.Lemma 3. If the smallest collection C 0 of sets in C covering the base set B hassize at most �2n0m logn0 then there exists a labelling of G which satis�es at leasta 132�2 log2 n0 fraction of the edges. Recall that � was de�ned in Property 4 of P.Corollary 1. Set Cover with intersection 1 cannot be approximated within afactor of � logn02 in random polynomial time, for some constant �, 0 < � � 16 ,unless NP � ZTIME(nO(log log n)). Further, if the auxiliary system of partitionsP can be constructed in deterministic polynomial (in n0) time, then approximat-ing to within a � log n02 factor is possible only if NP = DTIME(nO(log log n)).5 Randomized Construction of the Auxiliary System PThe obvious randomized construction is the following. Ignore the division intogroups and just view P as a collection of subgroups. For each partition which isthe �rst in its subgroup, throw each element i independently and uniformly atrandom into one of the m sets in that partition. For each partition P which isnot the �rst in its subgroup, throw each element i which is not present in anyof the sets on the right side of the �rst partition Q in this subgroup, into oneof the �rst m=2 sets in P . Property 1 is thus satis�ed directly. We need to showthat Properties 2,3,4 are together satis�ed with non-zero probability.Property 4 can be shown without much trouble. Slightly weak versions ofProperties 2 and 3 (intersection bounds of 2 instead of 1) also follow immediately.This can be improved to 1 using the Lovasz Local Lemma, but this does not givea constant success probability and also leads to problems in derandomization.The details of these calculations appear in the Appendix in Section 11.To obtain a high probability of success, we need to change the randomizedconstruction above to respect the following additional restriction (we call thisProperty 7): each set Pg;s;p;k has size at most d0�(deg+1)�dn0m , for all g; s; p; k,1 � g � d0; 1 � s � deg + 1; 1 � p � d; 1 � k � m.The new randomized construction proceeds as in the previous random ex-periment, �xing partitions in the same order as before, except that any choice ofthrowing an element i 2 N which violates Properties 2,3,7 is precluded. Property7 enables us to show that not too many choices are precluded for each element,and therefore, this experiment stays close in behaviour to the previous one, ex-cept that Properties 2,3,7 are all automatically satis�ed. The details of this newconstruction appear in Section 11.1 in the appendix.6 Derandomization in O(2n1��) TimeThe main hurdle in derandomizing the above randomized construction in poly-nomial time is Property 4. There could be up to O(2m�polylog(n)) = O(2(n0)1��0 )



ways of choosing �m logn0 sets from the various partitions in P for a constant�0 slightly smaller than �, and we need that each of these choices fails to coverN for Property 4 to be satis�ed.For the Lund-Yannakakis system of partitions described in Section 2.1, eachpartition was into 2 sets and the corresponding property could be obtained deter-ministically using small-bias logn-wise independent sample space constructions.This is no longer true in our case. Feige's [F98] system of partitions, where eachpartition is into several but still a constant number of parts, can be obtaineddeterministically using anti-universal sets [NSS95]. However, it is not clear howto apply either Feige's modi�ed proof system or his system of partitions to getintersection 1.We show in Section 7 that enforcing Property 4 in polynomial time corre-sponds to hitting combinatorial rectangles with certain restricted kinds of sets.In this paper, we take the slower approach of using Conditional Probabilities andenforcing Property 4 by checking each of the above choices explicitly. However,note that the number of choices is superexponential in n (even though it is sub-exponential in n0). To obtain a derandomization which is sub-exponential in n,we make the following change in P : the base set is taken to be of size n instead ofn0. We use an appropriate pessimistic estimator and conditional probabilities toconstruct P with parameter n instead of n0 (details are given in Section 12 in theAppendix). This will give a gap of �(logn) (instead of �(logn0)) in the set coverinstance SC). But since the base set size in SC is now O((n0 � n) polylog(n)),we get a hardness of only �(logn) = �( logn0log logn0 ) (note that the approximationfactor must be with respect to the base set size) unless NP � DTIME(2n1��),for any constant � such that 22� < � < 1=2.7 Connection to Hitting Combinatorial RectanglesFirst, consider the simpler problem of constructing a system of d0 � (deg + 1) � dpartitions of N = f1 : : : n0g with the following properties. Each partition hasm = (n0)1�� parts. No collection of �m logn0 parts from di�erent partitionson the whole should be able to cover N , unless some partition contributes morethan 3m=4 sets. This problem is shown to be equivalent to the problem of hittingcombinatorial rectangles as follows.A combinatorial rectangle is a set R = R1 � R2 � : : :�Rd0�(deg+1)�d, whereRi � [m] = f1 : : :mg. The volume of R, vol(R), is de�ned to be �k jRkjm . Ahitting set H is a subset of [m]d0�(deg+1)�d which intersects all large rectangles R,i.e., those with volume at least 14 43 � logn0 and for which each Ri has size at leastm=4.The desired system of partitions can be obtained using the above hittingset H of size O(m1+�) as follows. Let H = fH1; : : : ; Hng. Let Hx(i) denote theelement in the ith coordinate of Hx. The partitions are de�ned as follows: foreach partition i, element x 2 N lies in the position Hx(i). That these partitionsindeed have the properties described in the �rst paragraph of this section can



be seen as follows. Consider any collection C of at most 3m=4 sets from eachpartition and comprising �m logn0 sets on the whole. Let Ri denote the collectionof those sets from the ith partition which are not in C. Then C has an associatedcombinatorial rectangle R(C) given by R1 � R2 � : : : � Rd0�(deg+1)�d. Each Rihas cardinality at least m=4 and the volume of R(C) is at least 14 43 � logn0 . SinceH hits R(C), there exists an element in N which is not covered by C.Thus a small hitting set construction for combinatorial rectangles also givesa auxiliary set system with the properties described in the �rst paragraph ofthis section. Our problem requires constructing a similar system of partitionsbut with additional properties, namely Properties 1{4. These properties placethe following demands of the hitting set. Property 1 requires each hitting setpoint to have identical entries in coordinates corresponding to a subgroup, if ithas a value more than m=2 in the coordinate corresponding to the �rst partitionof the subgroup. Property 2 requires that entries in any hitting set point do notrepeat, modulo Property 1. Property 3 requires that no two distinct elementsin N are both present among the coordinates in two distinct hitting set points.Property 4 is actually the hitting property itself. But for Property 1 of our setsystem, we require to hit all large volume rectangles. Property 1 places furtherrestrictions on the nature of the hitting set and also the rectangles to be hit.The only algorithm known for constructing hitting sets for combinatorialrectangles is due to Linial, Luby, Saks, and Zuckerman [LL+93]. But the hittingset it gives does not satisfy Properties 1{3. Property 3, which is probably themost important of the three properties, does not seem to be satis�ed for reasonsintrinsic to the algorithm, as described below.In the above algorithm, the hitting set corresponds to taking all possiblewalks of length �(logm) in a constant degree expander graph with m vertices,when d0 � (deg + 1) � d = O(logm). The total number of walks is O(m1+�). Thereare 
(m�) walks starting at any given vertex, and they have to pass through theO(1) neighbours of this vertex. Therefore, there must be 
(m�) walks passingthrough the same pair of vertices. It follows that there could be m� elements inthis hitting set, all having the values k and k0 in some two consecutive coordinatesi; i + 1, which is a violation of Property 3. Thus the use of a constant degreeexpander, while facilitating the hitting property, seems to be a fundamentalobstruction for Property 3. Further, when d0 � (deg + 1) � d is not O(logm), adimension reduction procedure is needed, which also leads to several elementsbeing repeated within each hitting set point, violating Property 2.8 Covering Points with LinesMax-SNP Hardness.We observe that the NP-Hardness reduction of Megiddoand Tamir[MT82] from 3SAT also gives a Max-SNP hardness proof for thisproblem, if we start with MAX-3SAT(5) instead of 3SAT. We give a brief sketchof this proof.For each variable x, there is a 5 by 5 grid with 5 horizontal lines and 5 verticallines (�nally this grid will be oriented arbitrarily in 2D). Choosing the horizontal



lines corresponds to setting x to 1 and choosing the vertical lines correspondsto setting x to 0. Note that either all horizontal lines or all vertical lines haveto be chosen to cover the 25 grid points. Next, for each clause, there is a pointhaving 3 lines passing through it. These three lines are chosen from the grid linesin grids associated with the three variables in this clause, one line per variable.This can be done in such a way that any satisfying assignment to the variableswill choose 5 lines per variable to cover the variable grids and these lines will alsocover all clause points. Further, if no assignment satis�es more than a constantfraction of the clauses, then at least 
(jCj) lines in addition to the 5 lines pervariable will be needed to cover all points, where jCj is the number of clauses(which is at least a constant fraction of the number of variables). This gives amultiplicative constant gap.Integrality Gap. The following example shows an integrality gap of 2 for theobvious linear program. Take a collection of points in general position, considerall possible lines de�ned by pairs of these points, and take the dual of thisarrangement. Each point has 2 lines through it in the dual; therefore the linearprogram optimum equals half the number of lines. But the integer optimum mustchoose all but one of the lines. This gives a gap of 2.The following family of examples may give an �(logn) integrality gap, butwe have been unable to obtain a proof to this e�ect. Consider an n � n grid.Choose �(logn) directions in this grid so that a line in any of these directions has�( nlogn ) points on it. Choose each line in any of these directions with probability1/2. This gives a collection of n2 points and �(n log2 n) lines, with each pointhaving �(logn) lines through it and each line having �( nlogn ) points on it. TheLP optimum is O(n logn) (each line can be given a weight of O(1)logn for feasibility).If the integer optimum can be shown to be 
(n log2 n), then an integrality gapof �(logn) will follow.9 Open ProblemsA signi�cant contribution of this paper is that it leads to several open problems.1. Is there a polynomial time algorithm for constructing a hitting set for com-binatorial rectangles with the properties described in Section 7? Alternatively,can a di�erent proof system be obtained, as in [F98], which will require a setsystem with weaker hitting properties?2. Can an integrality gap of �(logn) be shown for the point-line examplesgiven at the end of Section 8?3. There are explicit constructions known for the general Set Covering prob-lem in which the integrality gap in �(logn). Are there such explicit constructionsfor the the Set Covering problem with intersection 1? Randomized constructionsare easy for this but we do not know how to do an explicit construction.4. Is there a polynomial time algorithm for the problem of covering pointswith lines which has an o(logn) approximation factor, or can super-constanthardness (or even a hardness of factor 2) be proved?
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Appendix10 Proofs of Lemmas 1, 2, and 3Lemma 1 Proof:Proof. Note that for jCk(v; a)\Ck0 (w; b)j to exceed 1, either v; w must be iden-tical or there must be an edge between v and w. The reason for this is that eachelement in Ck(v; a) has the form (e; �) where e is an edge incident at v whileeach element in Ck0 (w; b) has the form (e0; �), where e0 is an edge incident at w.We consider each case in turn.Case 1. Suppose v = w. Then either k 6= k0 or k = k0; a 6= b.First, consider Ck(v; a) and Ck0 (v; b) where k 6= k0 and v is a vertex in the leftside. If a = b, observe that Ck(v; a) \ Ck0 (v; a) = �. So assume that a 6= b. Theelements in the former set are of the form (e; i) where i 2 Pfe(a);col(e);a;k and theelements of the latter set are of the form (e; j) where j 2 Pfe(b);col(e);b;k0 . Notethat [e2EvPfe(a);col(e);a;k � Bk and [e2EvPfe(b);col(e);b;k0 � Bk0 . By Property 3of P , the intersection Bk; Bk0 is at most 1. However, this alone does not implythat Ck(v; a) and Ck0(v; b) have intersection at most 1, because there couldbe several tuples in both sets, all having identical second entries. This couldhappen if there are edges e1; e2 incident on v such that fe1(a) = fe2(a); fe1(b) =fe2(b) and there had been no colouring on edges. Property 2 and the fact thatcol(e1) 6= col(e2) for any two edges e1; e2 incident on v rule out this possibility,thus implying that jCk(v; a)\Ck0(v; b)j � 1. The proof for the case where v is avertex on the right is identical.Second, consider Ck(v; a) and Ck(v; b), where v is a vertex on the left anda 6= b. Elements in the former set are of the form (e; i) where e is an edgeincident on v and i 2 Pfe(a);col(e);a;k. Similarly, elements in the latter set are ofthe form (e; j) where j 2 Pfe(b);col(e);b;k. Note that [e2EvPfe(a);col(e);a;k � Aa;kand [e2EvPfe(b);col(e);b;k � Ab;k. The claim follows from Property 5 in this case.Third, consider Ck(v; a) and Ck(v; b), where v is a vertex on the right, a 6= b,and k > m=2. Elements in the former set are of the form (e; i) where e is anedge incident on v and i 2 Pa;col(e);1;k. Similarly, elements in the latter set areof the form (e; j) where j 2 Pb;col(e);1;k. Note that [e2EvPa;col(e);1;k � Da;k and[e2EvPb;col(e);1;k � Db;k. The claim follows from Property 6 in this case.Case 2. Finally consider sets Ck(v; a) and Ck0(w; b) where e = (v; w) is anedge, v is on the left side, and w on the right. Then Ck(v; a) contains elementsof the form (e0; i) where i 2 Pfe0 (a);col(e0);a;k. Ck0 (w; b) contains elements of theform (e0; j) where j 2 Pb;col(e0);1;k0 . The only possible elements in Ck(v; a) \Ck0 (w; b) are tuples with the �rst entry equal to e. Since Pfe(a);col(e);a;k � Bkand Pb;col(e);1;k0 � Bk0 and k � m=2; k0 > m=2, the claim follows from Properties2 and 3 in this case.Lemma 2 Proof:



Proof. Let label(v) denote the label given to vertex v by the above labelling. Con-sider the collection C 0 � C comprising sets C1(v; label(v)) : : : ; Cm2 (v; label(v))for each vertex v on the left and sets Cm2 +1(w; label(w)) : : : ; Cm(w; label(w)) foreach vertex w on the right. We show that these sets cover B. Since there arem=2 sets in C 0 per vertex, jC 0j = 2n0 � m2 = n0m.Consider any edge e = (v; w). It su�ces to show that for every i, 1 � i � n0,the tuple (e; i) in B is contained in either one of C1(v; label(v)) : : : ; Cm2 (v; label(v))or in one of Cm2 +1(w; label(w)) : : : ; Cm(w; label(w)). The key property we use isthat fe(label(v)) = label(w).Consider the partitions Pfe(label(v));col(e);label(v) and Plabel(w));col(e);1. Sincefe(label(v)) = label(w), the two partitions belong to the same group and sub-group. Since all partitions in a subgroup have the same right hand side, theelement i must be present either in one of the sets Plabel(w);col(e);label(v);k , wherek � m=2, or in one of the sets Plabel(w);col(e);1;k , where k > m=2. We considereach case in turn.First, suppose i 2 Plabel(w);col(e);label(v);k , for some k � m=2. Then, fromthe de�nition of Ck(v; label(v)), (e; i) 2 Ck(v; label(v)). Second, suppose i 2Plabel(w);col(e);1;k, for some k > m=2. Then, from the de�nition of Ck(w; label(w)),(e; i) 2 Ck(w; label(w)). The lemma follows.Lemma 3 Proof:Proof. Given C 0, we need to demonstrate a labelling of G with the above prop-erty. For each vertex v, de�ne L(v) to be the collection of labels a such thatCk(v; a) 2 C 0 for some k. We think of L(v) as the set of \suggested labels" for vgiven by C 0 and this will be a multiset in general. The labelling we obtain willultimately choose a label for v from this set. It remains to show that there isa way of assigning each vertex v a label from L(v) so as to satisfy su�cientlymany edges.We need some de�nitions. For an edge e = (v; w), de�ne #(e) = jL(v)j +jL(w)j. Since the sum of the sizes of all L(v)s put together is at most �2n0m logn0and since all vertices in G have identical degrees, the average value of #(e) isat most �2m logn0. Thus half the edges e have #(e) � �m logn0. We call theseedges good.We show how to determine a subset L0(v) of L(v) for each vertex v so thatthe following properties are satis�ed. If v has a good edge incident on it thenL0(v) has size at most 4� logn0. Further, for each good edge e = (v; w), thereexists a label in L0(v) and one in L0(w) which together satisfy e. Clearly, randomindependent choices of labels from L0(v) will satisfy a good edge with probability116�2 log2 n0 , implying a labelling which will satis�es at least a 132�2 log2 n0 fractionof the edges (since the total number of edges is at most twice the number ofgood edges), as required.For each label a 2 L(v), include it in L0(v) if and only if the number of setsof the form C�(v; a) in C 0 is at least m=4. Clearly, jL0(v)j � �m logn0m=4 = 4� logn0,for vertices v on which good edges are incident. It remains to show that for



each good edge e = (v; w), there exists a label in L0(v) and one in L0(w) whichtogether satisfy e.Consider a good edge e = (v; w). Using Property 4 of P , it follows that thereexists a label a 2 L(v) and a label b 2 L(w) such that the fe(a) = b and thenumber of sets of the form C�(v; a) or C�(w; b) in C 0 is at least 3m=4. The latterimplies that the number of sets of the form C�(v; a) in C 0 must be at least m=4,and likewise for C�(w; b). Thus a 2 L0(v) and b 2 L0(w). Since fe(a) = b, theclaim follows.Corollary 1 Proof:Proof. The second part of the corollary is shown as follows. Lemma 1 ensuresthat the intersection in SC is at most 1. Recall from Section 2 that either all theedges in G are satis�ed by some labelling or that no labelling satis�es more thana 1log3 n fraction. Since 132�2 log2 n0 � 1log2 n0 � 1log3 n , we obtain from Lemma 2and Lemma 3 that either there is a set cover of size n0m for SC or any set coverfor SC has size more than �n0m logn02 .Consider the �rst part next. As will be shown shortly in Section 11.1, thereis a randomized algorithm to construct the partition system P which alwayssatis�es the properties 1, 2, and 3. Further, as we will show in Corollary 2, thispartition system will satisfy property 4 with probability at least 12 . The corollarythen follows as in the previous paragraph. Only the ZTIME assumption needsexplanation, as the partition system constructed above is not guaranteed to haveproperty 4.Consider a set cover instance SC produced by the reduction and considerany algorithm which approximates the minimum set cover in SC to a factor of� logn02 . Let C 0 denote the cover produced by this algorithm. If jC 0j > �n0m logn02then, irrespective of P satisfying property 4, no labelling can satisfy more thana 1log3 n fraction of the edges in the label cover graph G. But if jC 0j � �n0m logn02then either it is the case that a labelling which satis�es all edges in G exists, orno such labelling exists because P fails to satisfy property 4. This latter situationcan be checked in polynomial time and the experiment can be repeated until thissituation does not arise. This checking is done as follows.The claim is that if jC 0j � �n0m logn02 and no labelling which satis�es all edgesin G exists, then there must exist a good edge e = (v; w) (as de�ned in the proofof Lemma 3) with the following property: for each label a 2 L0(v), fe(a) 62 L0(v).This claim is easy to verify from the proof of Lemma 3, and the correspondingcheck is easily performed in time polynomial in n0.11 Properties of the Randomized ConstructionRecall the randomized construction algorithm from Section 5.The Covering Property. Consider Property 4. Any collection S of at most�m logn0 sets in which the number of sets picked from the left side of any



partition p and the number of sets picked from the right side of the �rst partitionof the subgroup containing p add up to at most 3m4 , is called a valid collection.We show in the next paragraphs that the probability that a �xed element iis covered by a �xed valid collection S is upper bounded by 1� 1(n0)22� . Then theprobability that each element of N is covered by S is at most (1� 1(n0)22� )n0 �1e(n0)1�22� . The number of such sets S is at most 2(n0)(1��)d0�(deg+1)�d. Since d0 �(deg + 1) � d is polylogarithmic in n0, the total probability of all elements of Nbeing covered by some such S is very small provided 22� < �.Consider the collection S and an element i 2 N as mentioned above. Letrs(S) be the number of sets chosen from the right side of the sth subgroup andlet ls;p(S) be the number of sets chosen from the left side of the pth partition ofthe sth subgroup (recall that we are ignoring the division into groups and viewingP as a collections of subgroups). Then Ps rs(S) +Ps;p ls;p(S) � �m logn0 andrs(S) + ls;p(S) � 3m4 , for all s; p.The probability that element i 2 N is not covered by S in subgroup s isequal to 12 (1� rs(S)m=2 )+ 12�p(1� ls;p(S)m=2 ). The �rst term is the probability that i isin the right side and is not covered by S and the second term is the probabilitythat i lies in the left side and is not covered by S in any of the partitions ofthis subgroup. The probability that element i is not covered in any subgroupis the product �s h 12 (1� rs(S)m=2 ) + 12�p(1� ls;p(S)m=2 )i over all subgroups s. UsingPs rs(S) +Ps;p ls;p(S) � �m logn0 and rs(S) + ls;p(S) � 3m4 , for all s; p, thisexpression is at least 1(n0)22� .Intersection Properties: Consider Properties 2 and 3. First, we show anintersection bound of 2 instead of Property 3. Instead of Property 2, we showthat no element will occur more than twice in a column, modulo the fact thatthe right sides of partitions within a subgroup are identical. Subsequently, wewill use the Lovasz Local Lemma to get sharper bounds of 1 instead of 2 in eachcase.The probability that three �xed elements h; i; j 2 N are present in both Bkand Bk0 is at most (d�(deg+1)�d0m )6. Multiplying this by the number of choices ofh; i; j; k; k0 gives (n0)3m2(d�(deg+1)�d0m )6 = o(1), asm = (n0)1�� and d�(deg+1)�d0is polylogarithmic in n. Similarly, the probability that a �xed element i appearsthrice in a column k is at most (d0�(deg+)�dm )3. Multiplying this by the numberof choices of i; k gives n0m(d0�(deg+1)�dm )3 = o(1).To get sharper intersection bounds of 1, we observe that the dependencynumber is small and use the Lovasz Local Lemma as below.Consider Property 3. Let F (x; y;Bk; Bk0) be the event that elements x; y 2N both occur in Bk and Bk0 . For Property 3 to hold, no such event mustoccur. The probability of occurrence of any event F (x; y;Bk; Bk0) is at most( (d0�(deg+1)�d)m )4. The number of events F (�; �; �; �) is (n0)2m2 but the numberof events on which a particular event F (x; y;Bk; Bk0) depends is at most n0m2because F (x; y; �; �) and F (x0; y0; �; �) are independent if x; y; x0; y0 are all dis-



tinct. Since n0m2( (d0�(deg+1)�d)m )4 � 14 , the condition for the Lovasz Local Lemmais satis�ed.Consider Property 2 next. An event violating property 2 involves some ele-ment i occurring twice in column k. The number of such events equals the numberof choices of i; k, which is nm. Each event depends on only m events, as an eventinvolving i is independent of one involving j. Since m(d�(deg+1)�d0m )2 � 14 , thecondition for the Lovasz Local Lemma is satis�ed for this property as well.Using a version of the Lovasz Local Lemma, we get that Properties 2 and 3 to-gether hold with probability at least (1�2 (d0�(deg+1)�d)4m4 )(n0)2m2(1�2 (d0�(deg+1)�d)2m2 )n0m �( 1e )(n0)4� .The above use of the Lovasz Local Lemma poses some problems in derandom-ization. Typical derandomization of this lemma[Be91] requires epoly(�)p < 1as opposed to e�p < 1, where � is the degree of dependency. This slack is toomuch for our situation. Instead, we �rst obtain a slightly di�erent random exper-iment which does not require the Lovasz Local Lemma and then use appropriatepessimistic estimators to do the derandomization.11.1 The New Randomized ExperimentIn order to bypass the Lovasz Local Lemma, we will impose another restrictionon the system of partitions P , namely, that each set Pg;s;p;k has size at mostd0�(deg+1)�dn0m , for all g; s; p; k, 1 � g � d0; 1 � s � deg+1; 1 � p � d; 1 � k � m.We call this Property 7.Then we proceed as in the previous random experiment, �xing partitionsin the same order as before, except that any choice of throwing an elementi 2 N which violates Properties 2,3,7 is precluded. Property 7 enables us to showthat not too many choices are precluded for each element, and therefore, thisexperiment stays close in behaviour to the previous one, except that Properties2,3,7 are all automatically satis�ed.Suppose the partition that is being �xed currently is Pg;s;p. A position k for iwould cause a violation of Property 2 if i occurs in some set Pg0;s0;p0;k which hasalready been �xed. A position k for i would cause a violation of Property 3 ifthere exist k0 � m and j 2 N such that i and j both already occur in Bk0 and jalready occurs in Bk. A position k for i causes a violation of Property 7 if the sizeof the set Pg;s;p;k exceeds d0�(deg+1)�dn0m after i is put in that position. All suchpositions above are said to be bad for i in the current partition. The followinglemma shows that very few positions are bad for i in any given partition, andtherefore, this new experiment behaves similar to the previous one; therefore,Property 4 will continue to hold, but with a slightly modi�ed proof. This proofappears as part of the derandomization in Section 12 (see Corollary 2).Lemma 4. The total number of bad positions for i when processing partitionPg;s;p is at most 3md0�(deg+1)�d . Therefore, each element i is distributed uniformlyover a range of at least m(1� 3d0�(deg+1)�d ) sets in the �rst partition of any sub-



group and over a range of at least m2 (1� 6d0�(deg+1)�d ) sets in the other partitionsof any subgroup in the above random experiment.Proof. Since all previous partitions (suppose there are x of these) have been�xed so far satisfying Properties 2, 3 and 7, the size of the largest column is atmost xn0d0�(deg+1)�dm .The number of bad positions for i violating Property 2 is at most x. Thenumber of bad positions k for i violating Property 3 is at most xn0d0�(deg+1)�dm �x2.This is because k is bad if there exist j 2 N and k0 � m such that i and j bothalready occur in Bk0 and j already occurs in Bk; the number of js can be at mostxn0d0�(deg+1)�dm �x (all elements in the at most x columns already containing i arecandidates) and the number of k0s for each such j is at most x. The number of badpositions for i violating Property 7 is at most md0�(deg+1)�d . The total number ofbad positions is thus at most 3 md0�(deg+1)�d since x3 n0d0�(deg+1)�dm � md0�(deg+1)�d .The last statement follows if n0 < m2, ie, � < 1=2.12 Derandomization using Conditional ProbabilitiesFirst, we describe our pessimistic estimator. Subsequently, we show how to useit for derandomization.12.1 The Pessimistic Estimator for Conditional ProbabilitiesWe order all the subgroups globally. At any instant in our new randomized ex-periment, we will be processing a particular partition in some subgroup. Allprevious partitions would have been �xed and all subsequent partitions are cur-rently untouched. Further, the positions of some elements in the current partitionwould also have been �xed. Before de�ning the estimator, we need the followingde�nitions.De�nitions. We classify all subgroups in a partly �xed set system H into 3classes: completely �xed, partly �xed and untouched.Let U = 3md0�(deg+1)�d . By Lemma 4, U is an upper bound on the number ofbad locations in any partition.Consider a particular subgroup s and a valid collection S. Let rs(S) be thenumber of sets in S in the right side of subgroup s and r0s(S) = max(m=2 �rs(S) � U; 0). Let ls;p(S) be the number of sets in S in the left side of the pthpartition of the sth subgroup and l0s;p(S) = max(m=2� ls;p(S)� U; 0).For each subgroup s, i 2 N , valid collection S, de�ne h(s; i; S;H) as follows.h(s; i; S;H) will be a lower bound on the probability that element i is not coveredby S in subgroup s. There are several cases, and the de�nition of h(s; i; S;H) isdi�erent in each case.1. If i is already covered by S in any of the subgroups �xed in the partially�xed set system H , h(s; i; S;H) = 0. Otherwise, one of the following casesholds.



2. Subgroup s has already been �xed and element i is not covered by S in H .Then h(s; i; S;H) = 1.3. Element i has not yet been �xed in the �rst partition of the subgroup s andis not covered by S in H . h(s; i; S;H) = ( 12 � Um )( r0s(S)m=2 +�p l0s;p(S)m=2 ).4. Element i has been �xed in the �rst partition of subgroup s but not in all thepartitions of the subgroup. Suppose partition p > 1 of subgroup s is being�xed currently. If i lies the right side of the �rst partition of the subgroup s,then h(s; i; S;H) = 1 and if i lies in the left side of the �rst partition of thesubgroup s, h(s; i; S;H) = �p0�p l0s;p0 (S)m=2 .Now de�ne another quantity g(i; S;H), which will be shown to be an upperbound on the probability that i is covered over the remaining choices, as 1 ��sh(s; i; S;H), the product being over all subgroups s which haven't been �xedcompletely. Finally, de�ne f(S;H) = �ig(i; S;H), which will be an upper boundon the probability that every element i is covered by S.The pessimistic estimator F (H) is de�ned as PS f(S;H), where the sum isover all valid collections S. This will turn out to be an upper bound on the theexpected number of valid collections S which cover N .Lemma 5. For any partial set system H, F (H) is an upper bound on the ex-pected number of valid collections that cover N , the expectation being over allrandom set systems that contain H.Proof. Consider any valid collection S. Recall that there is a global ordering onall subgroups, without any partition into groups. Let ls;p(S); l0s;p(S); rs(S); r0s(S)be de�ned as above for each subgroup s and partition p. We prove below thatthe probability that element i is not covered in subgroup s, conditioned on el-ement i not being covered in all earlier subgroups and on any subset N 0 � Nof elements being covered, is at least h(s; i; S;H). Then the probability that iis not covered, conditioned on the set N 0 of elements being covered, is at least�sh(s; i; S;H), the product being over all subgroups s that have not been com-pletely �xed. Therefore, the probability that element i is covered, conditionedon the above event, is at most 1��sh(s; i; S;H) = g(i; S;H). The probabilitythat all elements are covered is consequently at most f(S;H) = �ig(i; S;H)and the expected number of valid collections S that cover all elements is at mostF (H) =PS f(S;H).It remains to be shown that the probability that element i is not covered insubgroup s, conditioned on it not being covered in earlier subgroups and on anysubset N 0 � N of elements being covered, is at least h(s; i; S;H). We considervarious cases below which are the same as in the earlier de�nition of h(s; i; S;H).1. i is covered in some subgroup by S. h(s; i; S;H) = 0 is clearly a lower bound.2. Subgroup s is �xed and i is not covered anywhere inH by S. Then h(s; i; S;H) =1 is exactly the probability that i is not covered in s.3. Element i is not yet �xed in the �rst partition of s, and it is not yet cov-ered by S. Then the probability that i is not covered by S in this subgroup



is the sum of the probabilities of not being covered in the left and in theright. The probability that i is placed in the right is the ratio of the num-ber of good locations in the right to the total number of good locations.This is at least m=2�Um . This is smaller than the actual value, because somepositions could become bad after the conditioning (recall that we want toshow that h(s; i; S;H) is a lower bound on the probability of not gettingcovered in s, conditioned on not getting covered in earlier subgroups). Theprobability that element i is not covered if placed in the right is at leastmax(m=2�rs(S)�U;0)# good locations in the right � r0s(S)m=2 . Therefore the probability that i isnot covered in the right is at least ( 12 � Um ) r0s(S)m=2 . Similarly, given that i isplaced on the left side, the probability that i is not covered in partition pis at least max(m=2�ls;p(S)�U;0)# good locations in the left � l0s;p(S)m=2 . Therefore the probabilitythat i is not covered in the left is at least ( 12 � Um )�p( l0s;p(S)m=2 ). The sum ofthe above quantities is equal to h(s; i; S;H).4. i is �xed in the �rst partition of s, but not in all the partitions of s. Supposepartition p > 1 is being �xed. If i lies in the right side of partition 1 of s,h(s; i; S;H) = 1. If i lies in the left side of partition 1 of s, the probabilitythat i is not covered is at least h(s; i; S;H) = �p0�p l0s;p(S)m=2 , by an argumentsimilar to the one in case 1.Let H = � denote the set system at the beginning of the experiment, whennothing has been �xed.Lemma 6. F (�) � ( 1e )n01�23� .Proof. Consider any valid collection S. Let ls;p(S); l0s;p(S); rs(S); r0s(S) be de�nedas above for each subgroup s and partition p. Then rs(S) + ls;p(S) � 3m4 foreach s; p. In addition,Ps rs(S)+Ps;p ls;p(S) � �m logn0. We prove below thatthe probability that element i is not covered, �sh(s; i; S;H) � 1n022� . Then theprobability that i is covered, g(i; S;H) = 1 ��sh(s; i; S;H) � 1� 1n022� . Fromthis, it follows that the probability that all elements in N are covered is at mostf(S;H) = �ig(i; S;H) � (1� 1n022� )n0 � ( 1e )n01�22� .The above quantity, f(S;H) is an upper bound on the probability that a �xedvalid collection S coversN . So the expected number of such collections that coverN is F (H) = PS f(S;H), where the sum is over all valid collections S. Sincethere are at most 2n01��d0�(deg+1)�d such collections, the expected number of suchcollections is at most 2n01��d0�(deg+1)�d( 1e )n01�22� . The above quantity is at most( 1e )n01�23� , thus implying the lemma.Finally, we show that �sh(s; i; S;H) � 1n022� . The following simple fact willbe useful. We state it without proof.Fact 1 �i=1:::k(1� aim ) � (1� r) xmr where Pi ai � x and ai � mr for all i andr < 1.We consider three cases. Let xs =Pp(ls;p(S) + U) in the following cases.



1. 2(rs(S)+U)m � 34Since ls;p(S)+Um + rs(S)+Um � 34 + 2Um for each p, it follows that 2(ls;p(S)+U)m �34 + 4Um . h(s; i; S;H) � 12 (1� U2m )�p l0s;p(S)m=2 � 12 (1� U2m )(1� 34 � 4Um ) 4xs3m . Thesecond inequality follows from the above fact. The number of such subgroupsis at most 4� logn0. Hence the product of h(s; i; S;H) over all such subgroupss is at least 1n04� 12 ( 18 ) 4� log2 n03 � 1n08� . This is because the product of 12 (1� U2m )over all such subgroups is at least 12 1n04� and the product (1 � 34 � 4Um ) 4xs3mover all such subgroups is at least ( 18 ) 4� logn03 (since Ps xs � �m logn0).2. 2(rs(S)+U)m � 34 and xs � m4Each (ls;p(S) + U) � m4 since xs = Pp(ls;p(S) + U) � m4 . Therefore2(ls;p(S)+U)m � 12 . Let the number of subgroups that satisfy the above con-ditions be y. Since h(s; i; S;H) = ( 12 � Um )( r0s(S)m=2 + �p l0s;p(C)m=2 ) = ( 12 r0s(S)m=2 +12�p l0s;p(S)m=2 )(1 � U2m ), the product �sh(s; i; S;H) = (1 � U2m )y�s( 12 r0s(S)m=2 +12�p l0s;p(S)m=2 ). The above product is only over subgroups s that satisfy theabove conditions. The �rst term, (1 � U2m )y is at least 12 . The second term,�s( 12 r0s(S)m=2 + 12�p l0s;p(S)m=2 ) can be expanded as a sum of 2y terms, each corre-sponding to a set A � f1; : : : ; yg. The term corresponding to one such setA is 12y�s2A r0s(S)m=2 �s62A�p l0s;p(S)m=2 . We show that each such term is at least12y 1n016�=3 For each s 2 A, r0s(S)m=2 = 1� rs(S)+Um=2 with 2(rs(S) + U) � 34m. Foreach s 62 A and for all p, l0s;p(S)m=2 = 1� ls;p(S)+Um=2 with 2(ls;p(S) +U) � 12m �34m. In addition, Ps2A(rs(S) + U) +Ps62A;p�d(ls;p(S) + U) � �m logn0 +2d0�(deg+1)�dU because �m logn0 is an upper bound on the number of setschosen in S. Using the above fact, the term for A is at least 12y (1� 34 ) 8�m logn03mwhich is at least 12y 1n016�=3 . Therefore the product over all subgroups satisfy-ing this case is at least 1n06� .3. 2(rs(S)+U)m � 34 and xs � m4Then 12 (1� 2(rs(S)+U)m ) � 12 14 . But there are at most 4� logn0 such subgroupss with xs � m4 . Since h(s; i; S;H) � 12 (1� U2m )(1� 2(rs(S)+U)m ), the productof h(s; i; S;H) over all such subgroups is at least 12 ( 14 )4� log2 n0 which is atleast 1n08� .Therefore the product of h(s; i; S;H) over all subgroups gives a lower boundof 1n022� .Corollary 2. The randomized experiment succeeds in giving the required parti-tion system P with probability at least 12 .12.2 The DerandomizationWe now use the method of conditional probabilities to �nd such a set system. Ateach step of the experiment, the position of some element i is being �xed. This



position is chosen from only those possibilities that do not cause a violationof properties 2,3,7. From Lemma 4, there is a large set of choices which donot cause a violation of properties 2,3,7. We need one that would not cause aviolation of property 4. Suppose the current partial con�guration is H . For eachpossible con�guration Hk resulting from the choice of position k for element i,we compute the value of the estimator F (Hk). The lemma below shows thatF (H) is at least as much as the average of F (Hk) over all k that can be chosen(recall that a choice is made from the set of positions that are not bad). IfF (H) < 1, there exists a k such that F (Hk) < 1. By Lemma 6, F (�) < 1. Soat each step of the experiment one can �nd a choice that does not increase thevalue of the estimator. Since F (H) is an upper bound on the expected number ofvalid collections S that cover N , we eventually get a set system with the desiredproperties.Lemma 7. Let H be a partial set system at instant t for the random experimentand suppose the position of element i is being �xed at the present instant. LetHk denote the con�guration corresponding to the choice of k as the position fori. Then F (H) is at least as much as the average of F (Hk) over all possible goodchoices k.Proof. We show that the term for each valid collection S, f(S;H) is at leastas much as the average of f(S;Hk) over all possible choices k for i at instantt + 1 in the random experiment. Since F (H) = PS f(S;H), the lemma thenfollows. For i0 6= i; g(i0; S;Hk) = g(i0; S;H). Since f(S;H) = �zg(z; S;H), itsu�ces to show that g(i; S;H) � 1# choices of kPk(g(i; S;Hk)). Recall thatg(i; S;H) = 1 � �sh(s; i; S;H), the product being over subgroups s that havenot been completely �xed.Suppose that the pth partition of the sth subgroup is being �xed currently.Then there are two cases : p = 1 and p > 1. First, consider the case p = 1. Theng(i; S;H) = 1� h(s; i; S;H)�s0>sh(s0; i; S;H) = 1� ( 12 � Um )( r0s(S)m=2 + l0s;1(S)m=2 �)�,where � = �p0>1( l0s;p0 (S)m=2 ) and � = �s0>sh(s0; i; S;H). g(i; S;Hk) = 1 if i getscovered in Hk. If i is not covered but is placed in right side, g(i; S;Hk) = 1� �.If i is not covered but is placed in the left side, g(i; S;Hk) = 1� ��.Let b1 and b2 denote the number of bad locations in the left and right sidesrespectively and b = b1 + b2. Let g1 denote the number of bad positions in theleft which are in S and g01 denote the number of bad positions in the left whichare not in S. Similarly g2 denotes the number of bad positions in the right whichare in S and g02 denotes the number of bad positions in the right not in S. Theng1 + g01 = b1 and g2 + g02 = b2. Let g = g1 + g2. Then ls;1(S) + rs(S) � g � 0,m=2+g1�ls;1(S)�b1 � 0 andm=2+g2�rs(S)�b2 � 0. The average of g(i; S;Hk)over all k that are good in the random experiment for i is exactly ls;1(S)+rs(S)�gm�b +m=2+g1�ls;1(S)�b1m�b (1���)+ m=2+g2�rs(S)�b2m�b (1��) = 1� m=2+g1�ls;1(S)�b1m�b ���m=2+g2�rs(S)�b2m�b �. Since r0s(S) = max(m=2�rs(S)�U; 0) � m=2�rs(S)�b2+g2and l0s;1(S) = max(m=2� ls;1(S) � U; 0) � m=2� ls;1(S) � b1 + g1, the lemmafollows.



Next consider the case p > 1. Then g(i; S;H) = 1�h(s; i; S;H)�s0>sh(s0; i; S;H) =1 � ( l0s;p(S)m=2 )
� where � = �s0>sh(s0; i; S;H) and 
 = 1 if p = d, the lastpartition in the subgroup, and is �p0>p( l0s;p0 (S)m=2 ) otherwise. g(i; S;Hk) = 1 ifi gets covered and it is 1 � 
� if it does not get covered. Let b1; g1; g01 beas de�ned above. Then the average of g(i; S;Hk) over all valid k at this in-stant is ls;p(S)�g1m=2�b1 + m=2+g1�ls;p(S)�b1m=2�b1 (1� 
�) = 1� m=2+g1�ls;p(S)�b1m=2�b1 
�. Sincel0s;p(S) = max(m=2� ls;p(S)�U; 0) � m=2+g1� ls;p(S)�b1, the lemma follows.13 Showing Hardness under NP = ZPPThis requires starting with a proof system for NP satisfying the following prop-erties: all but (5) below are satis�ed by [RS97,AS97]. We are currently exploringwhether (5) can be satis�ed.1. A constant number of provers, say p.2. O(logn) bit of randomness.3. Error probability which is O( 1logk n ).4. O(log logn) answer sizes.5. O(n�) degree for some small enough constant �; the degree is the numberof random strings for which a particular question is asked of a particularprover.6. The questions asked of a particular prover are uniformly distributed overa set of all possible questions asked of this prover (this is the uniformityproperty).7. The cardinalities of the sets of all possible questions asked of each prover arethe same (this is the equality property).8. For each random string generated by the veri�er and for each answer by the�rst prover to the question generated by this random string, there is at mostone combination of answers for the remaining provers for which the veri�eraccepts (this is the uniqueness property).9. The set of answers returned by a prover is disjoint from the set of answersreturned by any other prover (this is the disjointness property).The corresponding label cover abstraction for this would be a Label Cover in amulti-layered hypergraph. The number of layers equals the number of provers. Ahyperedge is a collection of vertices, exactly one from each layer, and correspondsto one question asked by the veri�er to each of the provers. Since the veri�eruses only O(logn) random bits, there are a polynomial number of vertices andhyperedges in this hypergraph. Further, the uniformity property ensures thatthe ith component of a random hyperedge is uniformly distributed over the ithlayer of vertices (this will be useful in the counterpart of Lemma 3 which we willneed now).The new Label Cover problem now involves giving labels to the vertices sothat as many hyperedges as possible are made consistent. These labels corre-spond to the answers returned by the provers. It is guaranteed now that either



all edges can be made consistent or at most O( 1logp n ) edges can be made consis-tent (here p is the number of provers).The uniqueness property ensures that for a particular hyperedge and for anyway of labelling the �rst vertex in this hyperedge, there is a unique labelling tothe other vertices in this hyperedge which will lead to consistency for this hyper-edge. Since the answer sizes are O(log logn), the pool of labels is O(polylog(n))in size. Since the degree is O(n�), the number of hyperedges incident on a vertexis O(n�) (this is the value of deg now). With these observations, it can be seenthat only the following changes need to be made in our construction of SC.The edges of the hypergraph are coloured using O(p�deg) colours. As before,the sets corresponding to vertices in the �rst layer will be associated with the leftsides of a partition. The sets corresponding to vertices in the remaining layerswill be associated with the right sides of a partition. These are de�ned as follows.We will now have a partition system P but with n0 = ny, for some constanty. For a vertex v which is not in the �rst layer and for a label a given to thisvertex, the set Ck(v; a) = [e2Evf(e; i)ji 2 Pa;col(e);1;kg, with m=2 < k � m, asbefore. For a vertex v which is in the �rst layer and for a label a given to thisvertex, the set Ck(v; a) is now de�ned as follows. Let fe(a) = (b2; : : : ; bk) be nowde�ned as the unique labelling to the other vertices in e which makes hyperedgee consistent, given that the �rst vertex has label a. For each k = 1 : : :m=2,Ck(v; a) = [e=(v;v2 ;:::;vk)2Evf(e; i)ji 2 Pb2;col(e);a;k ^ 8k0 = m=2+ 1 : : :m;8j; 2 �j � p; (e; i) 62 Ck0(vj ; bj); where fe(a) = (b2; : : : ; bk)g.Intersection properties follow as before (but using the disjointness propertyas well); note that deg has gone up but the earlier argument (see Lemma 4)works as long as deg = O(n�) for some small enough �. Next, if all hyperedgesare satis�ed by some label cover, then the minimum set cover has size at mostm2 times the total number of vertices. We now prove a statement analogous toLemma 3 that a small set cover leads to several hyperedges being satis�ed.If the optimum set cover size is a suitable constant times �m logny times thenumber of vertices, then by the uniformity property, several hyperedges have atotal of at most M = �m logny2 labels each. Call a label a for vertex v heavyif at least m=4 sets of the form C�(v; a) are picked in the optimum set cover.Consider one such hyperedge e = (v; v2; : : : ; vp). It now su�ces to show thatthere exists a consistent labelling (a; b2; : : : ; bp) of vertices in this hyperedge ecomprising only heavy labels. Then, a random choice at each vertex now satis�esa �( 1logp n ) fraction of the edges.Suppose this is not true, i.e., each consistent labelling of the vertices of e hasa light label. Then we derive a contradiction by showing that all tuples of theform (e; i), 1 � i � ny, could not possibly have been covered by the sets in the(claimed) optimum set cover being considered.Since we have �xed e, we will just talk in terms of covering all i, 1 � i � ny,instead of (e; i). We say that set C�(�; �) contains i if (e; i) is in this set. Thuswe can talk of each set in the claimed optimum set cover containing or notcontaining some of the i's in the range 1 : : : ny.



We now derive a contradiction by exhibiting a new collection of sets whoseunion contains all the is covered by the sets in the claimed optimum set cover,and in which the following two properties hold: i) this collection has at most 2Msets and, ii) no more than 3m=4 sets come from any single partition. By Property4, this new collection could not have covered all the is. The contradiction follows.The new collection of sets is obtained as follows. Start with the claimedoptimum cover and do the following for each consistent labelling (a; b2; : : : ; bp)of the vertices of e. If a is light for v then do nothing. Otherwise, there is a lightlabel bj ; then discard sets of the form C�(v; a) in the claimed optimum set coverand include all m=2 sets of the form fiji 2 Pbj ;col(e);a;kg (one set for each k from1 : : :m=2). Performing the above for all consistent labellings of the vertices of egives the new collection of sets.It remains to show that this collection has the required properties. Note that[m=2k=1Pbj ;col(e);a;k contains all the is that are contained in sets of the form C�(v; a)in the claimed optimum set cover. Clearly, since bj is light, the new collectiondoes not contain more than 3m=4 sets from any partition. Further, the totalnumber of sets in the new collection is at most 2M (at least m=4 sets must bediscarded for m=2 new sets to be added). This completes the proof.


