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Abstract. We consider a restricted version of the general Set Covering
problem in which each set in the given set system intersects with any
other set in at most 1 element. We show that the Set Covering problem
with intersection 1 cannot be approximated within a o(logn) factor in
random polynomial time unless NP C ZTIME(n®(°¢'°¢™)) We also
observe that the main challenge in derandomizing this reduction lies in
find a hitting set for large volume combinatorial rectangles satisfying cer-
tain intersection properties. These properties are not satisfied by current
methods of hitting set construction.

An example of a Set Covering problem with the intersection 1 property is
the problem of covering a given set of points in two or higher dimensions
using straight lines; any two straight lines intersect in at most one point.
The best approximation algorithm currently known for this problem has
an approximation factor of #(log n), and beating this bound seems hard.
We observe that this problem is Max-SNP-Hard.

1 Introduction

The general Set Covering problem requires covering a given base set B of size
n using the fewest number of sets from a given collection of subsets of B. This
is a classical NP-Complete problem and its instances arise in numerous diverse
settings. Thus approximation algorithms which run in polynomial time are of
interest.

Johnson[Jo74] showed that the greedy algorithm for Set Cover gives an
O(logn) approximation factor. Much later, following advances in Probabilis-
tically Checkable Proofs [ALMSS92], Lund and Yannakakis [LY93] and Bellare
et al. [BGLR93] showed that there exists a positive constant ¢ such that the
Set Covering problem cannot be approximated in polynomial time within a
clogn factor unless NP C DTIM E(n®(o81°8 ) Feige [F98] improved the ap-
proximation threshold to (1 — o(1)) logn, under the same assumption. Raz and
Safra[RS97] and Arora and Sudan[AS97] then obtained improved Probabilisti-
cally Checkable Proof Systems with sub-constant error probability; their work
implied that the Set Covering problem cannot be approximated within a clogn
approximation factor (for some constant ¢) unless NP = P.



Note that all the above hardness results are for general instances of the Set
Covering problem and do not hold for instances when the intersection of any pair
of sets in the given collection is guaranteed to be at most 1. Our motivation for
considering this restriction to intersection 1 arose from the following geometric
instance of the Set Covering problem.

Given a collection of points and lines in a plane, consider the problem of
covering the points with as few lines as possible. Megiddo and Tamir[MT82]
showed that this problem is NP-Hard. Hassin and Megiddo[HM91] showed NP-
Hardness even when the lines are axis-parallel but in 3D. The best approximation
factor known for this problem is @(logn). Improving this factor seems to be
hard, and this motivated our study of inapproximability for Set Covering with
intersection 1. Note that any two lines intersect in at most 1 point.

The problem of covering points with lines was in turn motivated by the
problem of covering a rectilinear polygon with holes using rectangles [Le87]. This
problem has applications in printing integrated circuits and image compression[CIK88].
This problem is known to be Max-SNP-Hard even when the rectangles are con-
strained to be axis-parallel. For this case, an O(y/logn)-factor approximation
algorithm was obtained recently by Anil Kumar and Ramesh[AR99]. However,
this algorithm does not extend to the case when the rectangles need not be axis-
parallel. Getting a o(log n)-factor approximation algorithm for this case seems
to require solving the problem of covering points with arbitrary lines, though we
are not sure of the exact nature of this relationship.

Our Result. We show that there exists a constant ¢ > 0 such that ap-
proximating the Set Covering problem with intersection 1 to within a factor of
c¢logn in random polynomial time is possible only if NP C ZTIM E(n®Ucglogn))
(where ZTIM E(t) denotes the class of languages that have a probabilistic algo-
rithm running in expected time ¢ with zero error). We also give a sub-exponential
derandomization which shows that approximating the Set Covering problem with

intersection 1 to within a factor of ¢; 1981 _ 1) deterministic polynomial time is
oglogn
1—e€

possible only if NP C DTIME(2™ ), where € is any positive constant less

than %

The starting point for our result above is the Lund-Yannakakis hardness
proof[LY93] for the general Set Covering problem. This proof uses an auxiliary
set system with certain properties. We show that this auxiliary set system nec-
essarily leads to large intersection. We then replace this auxiliary set system
by another carefully chosen set system with additional properties and modify
the reduction appropriately to ensure that intersection sizes stay small. The key
features of the new set system are partitions of the base set into several sets of
smaller size (instead of just 2 sets as in the case of the Lund-Yannakakis system
or a constant number of sets as in Feige’s system; small sets will lead to small
intersection) and several such partitions (so that sets which “access” the same
partition in the Lund-Yannakakis system and therefore have large intersection
now “access” distinct partitions).

We then show how the new set system above can be constructed in random-
ized polynomial time and also how this randomized algorithm can be deran-



domized using conditional probabilities and appropriate estimators in 0(2”176)
time, where € is a positive 1constant. This leads to the two conditions above,
namely, NP C DTIME(2" ) (but for a hardness of O(—22"-)) and NP C

loglogn
ZTIM E(n®U8'em)) A deterministic polynomial time construction of our new
set system will lead to the quasi-NP-Hardness of approximating the Set Cover-
ing problem with intersection 1 to within a factor of clogn, for some constant
c>0.

While the Lund-Yannakakis set system can be constructed in deterministic
polynomial time using e-biased limited independence sample spaces, this does
not seem to be true of our set system. One of the main bottlenecks in construct-
ing our set system in deterministic polynomial time is the task of obtaining a
polynomial size hitting set for Combinatorial Rectangles, with the hitting set
satisfying additional properties. One of these properties (the most important
one) is the following: if a hitting set point has the elements i, j among its coordi-
nates, then no other hitting set point can have both ¢, 7 among its coordinates.
The only known construction of a polynomial size hitting set for combinatorial
rectangles is by Linial, Luby, Saks, and Zuckerman [LL+93] and is based on
enumerating walks in a constant degree expander graph. As we show in this
paper, the hitting set obtained by [LL+93] does not satisfy the above property
for reasons that seem intrinsic to the use of constant degree expander graphs.

We also note that if the proof systems for NP obtained by Raz and Safra[RS97]
or Arora and Sudan[AS97] have an additional property then the condition NP C
ZTIM E(n®U°81°8 7)) can he improved to NP = ZPP. Similarly, the statement
that approximating the Set Covering problem with intersection 1 to within a

factor of ¢; lolgn in deterministic polynomial time is possible only if NP C
oglogn

DTIME(2" ") can be strengthened to approximation factor clogn instead of

clololg” . The property needed of the proof systems is that the degree, i.e., the
glogn

total number of random choices of the verifier for which a particular question is

asked of a particular prover, be O(n?), for some small enough constant value J.

Currently, we are exploring whether this condition can be satisfied by the above

proof systems. The degree influences the number of partitions in our auxiliary

proof system and therefore needs to be small.

The above proof of hardness for Set Covering with intersection 1 does not
apply to the problem of covering points with lines, the original problem which
motivated this paper; however, it does indicate that algorithms based on set
cardinalities and small pairwise intersection alone are unlikely to give a o(logn)
approximation factor for this problem.

Further, our result shows that constant VC-dimension alone does not help
in getting a o(logn) approximation for the Set Covering problem. This is to
be contrasted with the result of Bronnimann and Goodrich[BG94] which shows
that if the VC-dimension is a constant and an O(2) sized (weighted) e-net can
be constructed in polynomial time, then a constant factor approximation can be
obtained.

Finally, for the problem of covering points with lines, we observe that the
NP-Hardness proof of Megiddo and Tamir[MT82] can be easily extended to a



Max-SNP-Hardness proof. We also show that the obvious linear program for this
problem must have an integrality gap of 2. In addition, we give an example which
could possibly show an integrality gap of @(logn); however, we have been unable
to prove such a gap. We believe that a good understanding of this example would
reveal whether or not the linear program lower bound is strong enough and if
not, what other lower bounds one could use.

The paper is organized as follows. Section 2 will give an overview of the Lund-
Yannakakis reduction. Section 3 shows why the Lund-Yannakakis proof does
not show hardness of Set, Covering when the intersection is constrained to be 1.
Section 4 describes the reduction to Set Covering with intersection 1. This section
describes a new set system we need to obtain in order to perform the reduction.
Section 5 will sketch the randomized construction of this set system. Section
6 sketches the sub-exponential time derandomization. Section 7 describes the
connection to hitting combinatorial rectangles required to construct the above
set system in polynomial time. Section 8 gives a sketch of the Max-SNP-Hardness
proof for covering points with lines and shows an example which may have a large
integrality gap. Section 9 enumerates several interesting open problems which
arise from this paper. Section 13 in the Appendix shows how the condition NP C
ZTIME(n®°81°87)) can be improved to NP = ZPP if the Raz-Safra[RS97]
or the Arora-Sudan[AS97] proof system has a certain property.

2 Preliminaries: The Lund-Yannakakis Reduction

In this section, we sketch the version of the Lund-Yannakakis reduction described
by Arora and Lund [AL95]. The reduction starts with a 2-Prover 1-Round proof
system for Max-3SAT(5) which has inverse polylogarithmic error probability,
uses O(lognloglogn) randomness, and has O(loglogn) answer size. Here n is
the size of the Max-3SAT(5) formula F. Arora and Lund[AL95] abstract this
proof system into the following Label Cover problem.

The Label Cover Problem. A bipartite graph G having n' + n' vertices and
edge set E is given, where n' = n@0081og7) Al vertices have the same degree
deg, which is polylogarithmic in n. For each edge e € E, a partial function
fe 1 [d] = [d'] is also given, where d > d', and d,d’ are polylogarithmic in n.
The aim is to assign to each vertex on the left, a label in the range 1...d, and
to each vertex on the right, a label in the range 1...d', so as to maximize the
number of edges e = (u, v) satisfying f.(label(u)) = label(v). Edge e = (u,v) is
said to be satisfied by a labelling if the labelling satisfies f.(label(u)) = label(v).

The 2-Prover 1-Round proof system mentioned above ensures that either all
the edges in G are satisfied by some labelling or that no labelling satisfies more
than a 1og+n fraction of the edges, depending upon whether or not the Max-
3SAT(5) formula F is satisfiable. Next, in time polynomial in the size of G,
an instance SC of the Set Covering problem is obtained from this Label Cover
problem £C with the following properties: if there exists a labelling satisfying
all edges in G then there is a set cover of size 2n', and if no labelling satisfies



more than a log%n fraction of the edges then the smallest set cover has size
£2(2n'logn'). The base set in SC will have size polynomial in n'. It follows that
the Set Covering problem cannot be approximated to a logarithmic factor of the
base set size unless NP C DTIM E(n®(°glogn)),

Improving this condition to NP = P requires using a stronger multi-prover
proof system [RS97,AS97] which has a constant number of provers (more than
2), O(logn) randomness, O(loglogn) answer sizes, and inverse polylogarithmic
error probability. The reduction from such a proof system to the Set Covering
problem is similar to the reduction from the Label Cover to the Set Covering
problem mentioned above, with a modification needed to handle more than 2
provers (this modification is described in [BGLR93]).

In this abstract, we will only describe the reduction from Label Cover to
the Set Covering problem and show how we can modify this reduction to hold
for the case of intersection 1. This will show that Set Covering problem with
intersection 1 cannot be approximated to a logarithmic factor unless NP C
ZTTIM E(n®Uglogn)) The multi-prover proof system of the previous paragraph
with an additional condition can strengthen the latter condition to NP = ZPP;
this is described in the appendix.

We now briefly sketch the reduction from an instance £C of Label Cover to
an instance SC of the Set Covering problem.

2.1 Label Cover to Set Cover

The following auxiliary set system given by a base set N = {1...n'} and its
partitions is needed.

The Auxiliary System of Partitions. Consider d’' distinct partitions of N
into two sets each, with the partitions satisfying the following property: if at
most % sets in all are chosen from the various partitions with no two sets
coming from the same partition, then the union of these sets does not cover
N. Partitions with the above properties can be constructed deterministically in
polynomial time [AGHP92,NSS95]. Let P}, P? respectively denote the first and
second sets in the ith partition. We describe the construction of SC next.

Using P/s to construct SC. The base set B for SC is defined to be
{(e,i)le € E,1 < i < n'}. The collection C of subsets of B contains a set
C(v,a), for each vertex v and each possible label a with which v can be labelled.
If v is a vertex on the left, then for each a, 1 < a < d, C(v,a) is defined as
{(e,i)|e incident on v A i € P;e(a)}. And if v is a vertex on the right, then for
each a, 1 < a <d', C(v,a) is defined as {(e,i)|e incident on v Ai € P?}.

That SC satisfies the required conditions can be seen from the following facts.

1. If there exists a vertex labelling which satisfies all the edges, then B can be
covered by just the sets C(v, a) where a is the label given to v. Thus the size
of the optimum cover is 2n’ in this case.

2. If the total number of sets in the optimum set cover is at most some suitable
constant times n'logn’, then at least a constant fraction of the edges e =



(u,v) have the property that the number of sets of the form C(u, *) plus the
number of sets of the form C(v, ) in the optimum set cover is at most %.
Then, for each such edge e, there must exist a label a such that C(u,a) and
C(v, fe(a)) are both in this optimum cover. It can be easily seen that choosing
a label uniformly at random from these sets for each vertex implies that there

exists a labelling of the vertices which satisfies an Q(IOg%n,) > 10g13 — fraction

of the edges.

3 &C has Large Intersection

There are two reasons why sets in the collection C' in SC have large intersections.

Parts in the Partitions are Large. The first and obvious reason is that
the sets in each partition in the auxiliary system of partitions are large and
could have size ’.’7’; therefore, two sets in distinct partitions could have 2(n')
intersection. This could lead to sets C'(v,a) and C(v,b) having £2(n') common
elements of the form (e, i), for some e incident on v.

Clearly, the solution to this problem is to work with an auxiliary system
of partitions where each partition is a partition into not just 2 large sets, but
into several small sets. The problem remains if we form only a constant number
of parts, as in [F98]. We choose to partition into (n')!1™¢ sets, where € is some
non-zero constant to be fixed later. This ensures that each set in each partition
has size 6((n')¢ polylog(n)) and that any two such sets have O(1) intersection.
However, smaller set size leads to other problems which we shall describe shortly.

Functions f.() are not 1-1. Suppose we work with smaller set sizes as
above. Then consider the sets C'(v,a) and C(v,b), where v is a vertex on the left
and a, b are labels with the following property: for some edge e incident on v,
fe(a) = fe(b). Then each element (e, *) which appears in C(v, a) will also appear
in C(v,b), leading to an intersection size of up to 2((n')¢xdeg), where deg is the
degree of v in G. This is a more serious problem. Our solution to this problem is
to ensure that sets C'(v,a) and C(v,b) are constructed using distinct partitions
in the auxiliary system of partitions.

Next, we describe how to modify the auxiliary system of partitions and the
construction of SC in accordance with the above.

4 LC to SC with Intersection 1

Our new auxiliary system of partitions P will have d' * (deg + 1) * d partitions,
where deg is the degree of any vertex in G. Each partition has m = (n')!~¢
parts, for some € > 0 to be determined. These partitions are organized into d’
groups, each containing (deg + 1) x d partitions. Each group is further organized
into deg + 1 subgroups, each containing d partitions. The first m/2 sets in each
partition comprise its left half and the last m/2 its right half.

Let P, s, denote the pth partition in the sth subgroup of the gth group and
let P, 5 p.x denote the kth set (i.e., part) in this partition. Let B, denote the set



Ug.s.pPg.spk if 1 <k <m/2, and the set Uy sPy 5.1k, if m/2 < k < m. We also
refer to By, as the kth column of P.

We need the following properties to be satisfied by the system of partitions
P.

1. The right sides of all partitions within a subgroup are identical, i.e., Py s p 1 =
P, 51, for every k> m/2.

2. P(g,s,p,k) N P(¢',s",p',k) = ¢ unless either g = ¢',s = s',p = p', or,

k> m/2 and g = ¢',s = s'. In other words, no element appears twice

within a column, modulo the fact that the right sides of partitions within a

subgroup are identical.

|Bry N By | < 1forall k,k', 1 <k, k <m,k#Ek.

4. Suppose N is covered using at most Gmlogn' sets in all, disallowing sets on
the right sides of those partitions which are not the first in their respective
subgroups. Then there must be a partition in some subgroup s such that the
number of sets chosen from the left side of this partition plus the number of
sets chosen from right side of the first partition in s together sum to at least
3

Zm.

w

e and 8 are constants which will be fixed later. Let Ay = Ug Py s p.k;
for each p,k, 1 < p < d,1 < k < m/2. Let Dy = UsPy 51, for each g,k,
1<g<d,m/2+1<k<m. Property 2 above implies that:

5. |Apr N Ay k| =0 for all p # p', where 1 < p,p' <dand k <m/2.
6. |Dyx N Dy k| =0 for all g #g', where 1 < g,¢g' <d' and k > m/2.

We will describe how to obtain a system of partitions P satisfying these
properties in Section 5, Section 6, and Section 7. First, we show how a set
system SC with intersection 1 can be constructed using P.

4.1 Using P to construct SC

The base set B for SC is defined to be {(e,i)|le € E,1 < i < n'} as before. This
set has size (n')? * deg = O((n')? polylog(n)).

The collection C of subsets of B contains m/2 sets C1(v,a)...Cp/2(v,a),
for each vertex v on the left (in graph G) and each possible label a with which v
can be labelled. In addition, it contains m/2 sets C,, /211 (v,0a)...Cp(v,a), for
each vertex v on the right in G and each possible label a with which v can be
labelled. These sets are defined as follows.

Let E, denote the set of edges incident on v in G. We edge-colour G using
deg + 1 colours. Let col(e) be the colour given to edge e in this edge colouring.
For a vertex v on the left side, and any number k between 1 and m/2, Cy(v,a) =
Ueer, 1(€,7)]i € Pf_(a),col(e),a,k }- FOr a vertex v on the right side, and any number
k between m /2 + 1 and m, Cy(v,a) = Ueer, {(€,9)]i € Py coie) 1,1}

We now give the following lemmas which state that the set system SC has
intersection 1 and that it has a set cover of small size if and only if there exists a
way to label the vertices of G satisfying several edges simultaneously. The proofs
are deferred to Section 10 in the Appendix.



Lemma 1. The intersection of any two distinct sets Cy(v,a) and Cy (w,b) is
at most 1.

Lemma 2. If there exists a way of labelling vertices of G satisfying all its edges
then there exists a collection of n'm sets in C which covers B.

Lemma 3. If the smallest collection C' of sets in C covering the base set B has
size at most gn’mlog n' then there exists a labelling of G which satisfies at least

a W fraction of the edges. Recall that 8 was defined in Property 4 of P.

Corollary 1. Set Cover with intersection 1 cannot be approrimated within a
factor of [7'10# in random polynomial time, for some constant 3, 0 < B < %,
unless NP C ZTIM E(nCUog1o8 ) Fyrther, if the auziliary system of partitions
P can be constructed in deterministic polynomial (in n') time, then approzimat-
ing to within a [7'10% factor is possible only if NP = DTIM E(nCUcglogn)),

5 Randomized Construction of the Auxiliary System P

The obvious randomized construction is the following. Ignore the division into
groups and just view P as a collection of subgroups. For each partition which is
the first in its subgroup, throw each element i independently and uniformly at
random into one of the m sets in that partition. For each partition P which is
not the first in its subgroup, throw each element i which is not present in any
of the sets on the right side of the first partition ) in this subgroup, into one
of the first m/2 sets in P. Property 1 is thus satisfied directly. We need to show
that Properties 2,3,4 are together satisfied with non-zero probability.

Property 4 can be shown without much trouble. Slightly weak versions of
Properties 2 and 3 (intersection bounds of 2 instead of 1) also follow immediately.
This can be improved to 1 using the Lovasz Local Lemma, but this does not give
a constant success probability and also leads to problems in derandomization.
The details of these calculations appear in the Appendix in Section 11.

To obtain a high probability of success, we need to change the randomized

construction above to respect the following additional restriction (we call this
d' x(deg+1)*dn’
m

Property 7): each set P, , ) has size at most , for all g,s,p,k,
1<g<d,;1<s<deg+1,1<p<d,1<k<m.

The new randomized construction proceeds as in the previous random ex-
periment, fixing partitions in the same order as before, except that any choice of
throwing an element ¢ € N which violates Properties 2,3,7 is precluded. Property
7 enables us to show that not too many choices are precluded for each element,
and therefore, this experiment stays close in behaviour to the previous one, ex-
cept that Properties 2,3,7 are all automatically satisfied. The details of this new

construction appear in Section 11.1 in the appendix.

6 Derandomization in O(2" ") Time

The main hurdle in derandomizing the above randomized construction in poly-

1—¢’

nomial time is Property 4. There could be up to O(2m*rolvles(n)y = O(2(n)' ")



ways of choosing Bmlogn’ sets from the various partitions in P for a constant
€' slightly smaller than €, and we need that each of these choices fails to cover
N for Property 4 to be satisfied.

For the Lund-Yannakakis system of partitions described in Section 2.1, each
partition was into 2 sets and the corresponding property could be obtained deter-
ministically using small-bias log n-wise independent sample space constructions.
This is no longer true in our case. Feige’s [F98] system of partitions, where each
partition is into several but still a constant number of parts, can be obtained
deterministically using anti-universal sets [NSS95]. However, it is not clear how
to apply either Feige’s modified proof system or his system of partitions to get
intersection 1.

We show in Section 7 that enforcing Property 4 in polynomial time corre-
sponds to hitting combinatorial rectangles with certain restricted kinds of sets.
In this paper, we take the slower approach of using Conditional Probabilities and
enforcing Property 4 by checking each of the above choices explicitly. However,
note that the number of choices is superexponential in n (even though it is sub-
exponential in n'). To obtain a derandomization which is sub-exponential in n,
we make the following change in P: the base set is taken to be of size n instead of
n'. We use an appropriate pessimistic estimator and conditional probabilities to
construct P with parameter n instead of n’ (details are given in Section 12 in the
Appendix). This will give a gap of ©(logn) (instead of @(logn')) in the set cover
instance SC). But since the base set size in SC is now O((n' * n) polylog(n)),

logn'
log log n’

factor must be with respect to the base set size) unless NP C DTIM E(2"
for any constant € such that 2208 < e < 1/2.

) (note that the approximation

)7

we get a hardness of only @(logn) = O(

1—e

7 Connection to Hitting Combinatorial Rectangles

First, consider the simpler problem of constructing a system of d’' x (deg + 1) * d
partitions of N = {1...n'} with the following properties. Each partition has
m = (n')1~¢ parts. No collection of Bmlogn' parts from different partitions
on the whole should be able to cover N, unless some partition contributes more
than 3m/4 sets. This problem is shown to be equivalent to the problem of hitting
combinatorial rectangles as follows.

A combinatorial rectangle is a set B = Ry X Ry X ... X Ry y(deg4+1)«d; Where

R; C [m] = {1...m}. The volume of R, vol(R), is defined to be 1 Bl A

m
@'*(deg+1)*d which intersects all large rectangles R,

hitting set H is a subset of [m]
i.e., those with volume at least ﬁ and for which each R; has size at least
3

log
m/4.

The desired system of partitions can be obtained using the above hitting
set H of size O(m'*¢) as follows. Let H = {H,,...,H,}. Let H,(i) denote the
element in the ith coordinate of H,. The partitions are defined as follows: for
each partition i, element 2 € N lies in the position H,(i). That these partitions
indeed have the properties described in the first paragraph of this section can



be seen as follows. Consider any collection C' of at most 3m/4 sets from each
partition and comprising 8m logn' sets on the whole. Let R; denote the collection
of those sets from the ith partition which are not in C. Then C has an associated
combinatorial rectangle R(C) given by Ry X Ra X ... X Ry, (deg+1)xd- Each R;

has cardinality at least m/4 and the volume of R(C) is at least p - Since

%ﬁlogn
H hits R(C), there exists an element in N which is not covered by C.

Thus a small hitting set construction for combinatorial rectangles also gives
a auxiliary set system with the properties described in the first paragraph of
this section. Our problem requires constructing a similar system of partitions
but with additional properties, namely Properties 1 4. These properties place
the following demands of the hitting set. Property 1 requires each hitting set
point to have identical entries in coordinates corresponding to a subgroup, if it
has a value more than m /2 in the coordinate corresponding to the first partition
of the subgroup. Property 2 requires that entries in any hitting set point do not
repeat, modulo Property 1. Property 3 requires that no two distinct elements
in N are both present among the coordinates in two distinct hitting set points.
Property 4 is actually the hitting property itself. But for Property 1 of our set
system, we require to hit all large volume rectangles. Property 1 places further
restrictions on the nature of the hitting set and also the rectangles to be hit.

The only algorithm known for constructing hitting sets for combinatorial
rectangles is due to Linial, Luby, Saks, and Zuckerman [LL+93]. But the hitting
set it gives does not satisfy Properties 1-3. Property 3, which is probably the
most important of the three properties, does not seem to be satisfied for reasons
intrinsic to the algorithm, as described below.

In the above algorithm, the hitting set corresponds to taking all possible
walks of length @(logm) in a constant degree expander graph with m vertices,
when d' % (deg + 1) * d = O(logm). The total number of walks is O(m!*¢). There
are 2(m*®) walks starting at any given vertex, and they have to pass through the
O(1) neighbours of this vertex. Therefore, there must be 2(m¢) walks passing
through the same pair of vertices. It follows that there could be m*® elements in
this hitting set, all having the values k and k' in some two consecutive coordinates
i,% + 1, which is a violation of Property 3. Thus the use of a constant degree
expander, while facilitating the hitting property, seems to be a fundamental
obstruction for Property 3. Further, when d’ x (deg + 1) * d is not O(logm), a
dimension reduction procedure is needed, which also leads to several elements
being repeated within each hitting set point, violating Property 2.

8 Covering Points with Lines

Max-SNP Hardness. We observe that the NP-Hardness reduction of Megiddo
and Tamir[MT82] from 3SAT also gives a Max-SNP hardness proof for this
problem, if we start with MAX-3SAT(5) instead of 3SAT. We give a brief sketch
of this proof.

For each variable z, there is a 5 by 5 grid with 5 horizontal lines and 5 vertical
lines (finally this grid will be oriented arbitrarily in 2D). Choosing the horizontal



lines corresponds to setting x to 1 and choosing the vertical lines corresponds
to setting = to 0. Note that either all horizontal lines or all vertical lines have
to be chosen to cover the 25 grid points. Next, for each clause, there is a point
having 3 lines passing through it. These three lines are chosen from the grid lines
in grids associated with the three variables in this clause, one line per variable.
This can be done in such a way that any satisfying assignment to the variables
will choose 5 lines per variable to cover the variable grids and these lines will also
cover all clause points. Further, if no assignment satisfies more than a constant
fraction of the clauses, then at least (2(]C|) lines in addition to the 5 lines per
variable will be needed to cover all points, where |C] is the number of clauses
(which is at least a constant fraction of the number of variables). This gives a
multiplicative constant gap.

Integrality Gap. The following example shows an integrality gap of 2 for the
obvious linear program. Take a collection of points in general position, consider
all possible lines defined by pairs of these points, and take the dual of this
arrangement. Each point has 2 lines through it in the dual; therefore the linear
program optimum equals half the number of lines. But the integer optimum must
choose all but one of the lines. This gives a gap of 2.

The following family of examples may give an @(logn) integrality gap, but
we have been unable to obtain a proof to this effect. Consider an n x n grid.
Choose ©(logn) directions in this grid so that a line in any of these directions has

O( logn) points on it. Choose each line in any of these directions with probability

1/2. This gives a collection of n? points and @(nlog”n) lines, with each point
having @(logn) lines through it and each line having ©(55—) points on it. The

n

log
LP optimum is O(nlogn) (each line can be given a weight of % for feasibility).
If the integer optimum can be shown to be 2(n log? n), then an integrality gap

of ©(logn) will follow.

9 Open Problems

A significant contribution of this paper is that it leads to several open problems.

1. Is there a polynomial time algorithm for constructing a hitting set for com-
binatorial rectangles with the properties described in Section 77 Alternatively,
can a different proof system be obtained, as in [F98], which will require a set
system with weaker hitting properties?

2. Can an integrality gap of @(logn) be shown for the point-line examples
given at the end of Section 87

3. There are explicit constructions known for the general Set Covering prob-
lem in which the integrality gap in ©(logn). Are there such explicit constructions
for the the Set Covering problem with intersection 1?7 Randomized constructions
are easy for this but we do not know how to do an explicit construction.

4. Is there a polynomial time algorithm for the problem of covering points
with lines which has an o(logn) approximation factor, or can super-constant
hardness (or even a hardness of factor 2) be proved?
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Appendix

10 Proofs of Lemmas 1, 2, and 3

Lemma 1 Proof:

Proof. Note that for |C (v, a) N Cy (w, b)| to exceed 1, either v, w must be iden-
tical or there must be an edge between v and w. The reason for this is that each
element in Cy(v,a) has the form (e,*) where e is an edge incident at v while
each element in Cj (w,b) has the form (e', %), where €’ is an edge incident at w.
We consider each case in turn.

Case 1. Suppose v = w. Then either k # k' or k = k',a £ b.

First, consider C(v,a) and Cy (v, b) where k # k' and v is a vertex in the left
side. If a = b, observe that Ct(v,a) N Cy (v, a) = ¢. So assume that a # b. The
elements in the former set are of the form (e, i) where i € P_(q),coi(e),a,x and the
elements of the latter set are of the form (e, j) where j € Pf_(4), coi(e),p.17- NOte
that UeEE,,Pfe(a),col(e),a,k C By, and UeEE,,Pfe(b),col(e),b,k’ C By By PrOPerty 3
of P, the intersection By, By is at most 1. However, this alone does not imply
that Cp(v,a) and Cy (v,b) have intersection at most 1, because there could
be several tuples in both sets, all having identical second entries. This could
happen if there are edges e;, e; incident on v such that f,, (a) = fe,(a), fe, (b) =
fes(b) and there had been no colouring on edges. Property 2 and the fact that
col(ey) # col(eq) for any two edges e, es incident on v rule out this possibility,
thus implying that |Ck(v,a) N Cy (v,b)| < 1. The proof for the case where v is a
vertex on the right is identical.

Second, consider Ck(v,a) and Ck(v,b), where v is a vertex on the left and
a # b. Elements in the former set are of the form (e,i) where e is an edge
incident on v and i € Py, (4),col(e),a,k- Similarly, elements in the latter set are of
the form (e, j) where j € Pf.,,(b),col(e)7b,lc- Note that UEEEvaE(a),col(e)7a7k CAx
and Uee i, Py, (1), coi(e) b,k € Abk- The claim follows from Property 5 in this case.

Third, consider C (v, a) and Ck(v,b), where v is a vertex on the right, a # b,
and k > m/2. Elements in the former set are of the form (e, i) where e is an
edge incident on v and i € P, .0i(¢),1,5- Similarly, elements in the latter set are
of the form (e, j) where j € Py coi(e),1,1- Note that Ucer, Py core), 1.6 € Da,k and
UeeE, Py cot(e),1,k € Do k- The claim follows from Property 6 in this case.

Case 2. Finally consider sets Cy(v,a) and Cy (w,b) where e = (v,w) is an
edge, v is on the left side, and w on the right. Then C} (v, a) contains elements
of the form (e',7) where i € Py, (q) cot(e),a,k- Che (w, D) contains elements of the
form (', j) where j € Py oi(ery,1,1r- The only possible elements in Cy(v,a) N
Cr (w,b) are tuples with the first entry equal to e. Since Pt (4 coi(e),ak € Br
and Py co(e),1,6 € Br and k <m /2, k" > m/2, the claim follows from Properties
2 and 3 in this case.

Lemma 2 Proof:



Proof. Let label(v) denote the label given to vertex v by the above labelling. Con-
sider the collection C' C C comprising sets C1(v,label(v)) ..., Cm (v, label(v))
for each vertex v on the left and sets C'm 41 (w, label(w)) ..., Cy (w, label (w)) for
each vertex w on the right. We show that these sets cover B. Since there are
m/2 sets in C" per vertex, |C'| = 2n' * % = n'm.

Consider any edge e = (v, w). It suffices to show that for every i, 1 <i < n',
the tuple (e, ) in B is contained in either one of Cy (v, label(v)) ..., C=z (v, label(v))
or in one of Cr 41 (w, label(w)) ..., Cp (w,label(w)). The key property we use is
that f.(label(v)) = label(w).

Consider the partitions Pr_(apei(v)),col(e) label(v) @0 Plapei(w)),col(e),1- Since
fe(label(v)) = label(w), the two partitions belong to the same group and sub-
group. Since all partitions in a subgroup have the same right hand side, the
element i must be present either in one of the sets Pgpei(w),col(e),tabel(v),k; Where
k < m/2, or in one of the sets Piypei(w),coi(e),1,k» Where & > m/2. We consider
each case in turn.

First, suppose i € Plgpei(w),col(e),label(v),k, for some k < m/2. Then, from
the definition of Cy(v,label(v)), (e,i) € Ci(v,label(v)). Second, suppose i €
Piapei(w),col(e) 1,k for some k > m/2. Then, from the definition of Cy (w, label (w))
(e,i) € C(w,label(w)). The lemma follows.

3

Lemma 3 Proof:

Proof. Given C', we need to demonstrate a labelling of G with the above prop-
erty. For each vertex v, define L(v) to be the collection of labels a such that
Cr(v,a) € C' for some k. We think of L(v) as the set of “suggested labels” for v
given by C'" and this will be a multiset in general. The labelling we obtain will
ultimately choose a label for v from this set. It remains to show that there is
a way of assigning each vertex v a label from L(v) so as to satisfy sufficiently
many edges.

We need some definitions. For an edge e = (v,w), define #(e) = |L(v)| +
|L(w)]. Since the sum of the sizes of all L(v)s put together is at most Zn'm logn’
and since all vertices in G have identical degrees, the average value of #(e) is
at most gmlog n'. Thus half the edges e have #(e) < fmlogn'. We call these
edges good.

We show how to determine a subset L'(v) of L(v) for each vertex v so that
the following properties are satisfied. If v has a good edge incident on it then
L'(v) has size at most 48logn'. Further, for each good edge e = (v, w), there
exists a label in L'(v) and one in L'(w) which together satisfy e. Clearly, random
independent choices of labels from L'(v) will satisfy a good edge with probability
mﬁ’ implying a labelling which will satisfies at least a mﬁ fraction
of the edges (since the total number of edges is at most twice the number of
good edges), as required.

For each label a € L(v), include it in L'(v) if and only if the number of sets
of the form C, (v, a) in C' is at least m /4. Clearly, |L'(v)| < %’;i”l =4plogn’,
for vertices v on which good edges are incident. It remains to show that for



each good edge e = (v,w), there exists a label in L'(v) and one in L'(w) which
together satisfy e.

Consider a good edge e = (v, w). Using Property 4 of P, it follows that there
exists a label a € L(v) and a label b € L(w) such that the f.(a) = b and the
number of sets of the form C, (v, a) or C,(w, b) in C' is at least 3m /4. The latter
implies that the number of sets of the form C,(v,a) in C' must be at least m /4,
and likewise for C,(w,b). Thus a € L'(v) and b € L'(w). Since f.(a) = b, the
claim follows.

Corollary 1 Proof:

Proof. The second part of the corollary is shown as follows. Lemma 1 ensures
that the intersection in SC is at most 1. Recall from Section 2 that either all the
edges in (G are satisfied by some labelling or that no labelling satisfies more than
a log%n fraction. Since 3257 110g2 — 2> 10g£ — > loglgn, we obtain from Lemma 2
and Lemma 3 that either there is a set cover of size n'm for SC or any set cover
Bn'mlogn’

PR

for SC has size more than

Consider the first part next. As will be shown shortly in Section 11.1, there
is a randomized algorithm to construct the partition system P which always
satisfies the properties 1, 2, and 3. Further, as we will show in Corollary 2, this
partition system will satisfy property 4 with probability at least % The corollary
then follows as in the previous paragraph. Only the ZT 1M E assumption needs
explanation, as the partition system constructed above is not guaranteed to have
property 4.

Consider a set cover instance SC produced by the reduction and consider
any algorithm which approximates the minimum set cover in SC to a factor of
’BIOTg"I. Let C’ denote the cover produced by this algorithm. If |C’| > W
then, irrespective of P satisfying property 4, no labelling can satisfy more than
log;gn fraction of the edges in the label cover graph G. But if |C’| < W
then either it is the case that a labelling which satisfies all edges in G exists, or
no such labelling exists because P fails to satisfy property 4. This latter situation
can be checked in polynomial time and the experiment can be repeated until this
situation does not arise. This checking is done as follows.

The claim is that if |C'] < W and no labelling which satisfies all edges
in G exists, then there must exist a good edge e = (v, w) (as defined in the proof
of Lemma 3) with the following property: for each label a € L'(v), f.(a) ¢ L'(v).
This claim is easy to verify from the proof of Lemma 3, and the corresponding
check is easily performed in time polynomial in n'.

a

11 Properties of the Randomized Construction

Recall the randomized construction algorithm from Section 5.

The Covering Property. Consider Property 4. Any collection S of at most
Bmlogn' sets in which the number of sets picked from the left side of any



partition p and the number of sets picked from the right side of the first partition
of the subgroup containing p add up to at most 3Tm, is called a walid collection.

We show in the next paragraphs that the probability that a fixed element ¢
is covered by a fixed valid collection S is upper bounded by 1 — (1'1’);225' Then the

probability that each element of N is covered by S is at most (1 — (n,)%m)”' <

W. The number of such sets S is at most 2(7)"'~“d'*(deg+1)*d GQince ¢’ «
(deg + 1) x d is polylogarithmic in n’, the total probability of all elements of N
being covered by some such S is very small provided 223 < e.

Consider the collection S and an element i € N as mentioned above. Let
rs(S) be the number of sets chosen from the right side of the sth subgroup and
let I5 ,(S) be the number of sets chosen from the left side of the pth partition of
the sth subgroup (recall that we are ignoring the division into groups and viewing
P as a collections of subgroups). Then 3 r5(S) + >, , ls,(S) < fmlogn' and
rs(S) + 15 p(S) < 22 for all s,p.

The probability that element ¢ € N is not covered by S in subgroup s is
equal to 3(1— T’;l(/.‘?;) )+ 3 1,(1— %) The first term is the probability that i is
in the right side and is not covered by S and the second term is the probability
that 4 lies in the left side and is not covered by S in any of the partitions of
this subgroup. The probability that element ¢ is not covered in any subgroup

is the product I [%(1 - ﬂ) +10,(1 %) over all subgroups s. Using

m/2 2
2 1s(S) + 22, , lsp(S) < Bmlogn' and ry(S) +1s,,(S) < 3m for all s,p, this

expression is at least W.

Intersection Properties: Consider Properties 2 and 3. First, we show an
intersection bound of 2 instead of Property 3. Instead of Property 2, we show
that no element will occur more than twice in a column, modulo the fact that
the right sides of partitions within a subgroup are identical. Subsequently, we
will use the Lovasz Local Lemma to get sharper bounds of 1 instead of 2 in each
case.

The probability that three fixed elements h,i,j € N are present in both By,

and By is at most (d*(degTw)G. Multiplying this by the number of choices of

h,i, j, k, K gives (n')3m?2(LeatDxdy6 — (1) agm = (n')!~¢ and dx(deg+1)xd"

m
is polylogarithmic in n. Similarly, the probability that a fixed element i appears

thrice in a column k is at most (W)B. Multiplying this by the number

of choices of i, k gives n’m(%)3 =o(1).

To get sharper intersection bounds of 1, we observe that the dependency
number is small and use the Lovasz Local Lemma as below.

Consider Property 3. Let F(x,y, By, By:) be the event that elements z,y €
N both occur in By and By . For Property 3 to hold, no such event must
occur. The probability of occurrence of any event F'(z,y, By, By) is at most
((d,*(de%)*d))‘l. The number of events F'(x,x,*,%) is (n')?m? but the number
of events on which a particular event F(z,y, By, By/) depends is at most n'm?
because F(x,y,*,*) and F(z',y', %, x) are independent if z,y,z',y" are all dis-



tinct. Since n'm
is satisfied.

2( (d'*(deg+1)*d) )4 <

- %, the condition for the Lovasz Local Lemma,

Consider Property 2 next. An event violating property 2 involves some ele-
ment i occurring twice in column k. The number of such events equals the number
of choices of i, k, which is nm. Each event depends on only m events, as an event
involving ¢ is independent of one involving j. Since 7n(d*(de“"#ﬂ)*dl)2 < 1, the
condition for the Lovasz Local Lemma is satisfied for this property as well.

Using a version of the Lovasz Local Lemma, we get that Properties 2 and 3 to-

gether hold with probability at least (172(‘11*(‘157%711)*‘1)4)(”’)2”12 (172(‘11*(‘1%7?1)“1)2)”,’”

(B,

The above use of the Lovasz Local Lemma poses some problems in derandom-
ization. Typical derandomization of this lemma[Be91] requires epoly(A)p < 1
as opposed to eAp < 1, where A is the degree of dependency. This slack is too
much for our situation. Instead, we first obtain a slightly different random exper-
iment which does not require the Lovasz Local Lemma and then use appropriate
pessimistic estimators to do the derandomization.

11.1 The New Randomized Experiment

In order to bypass the Lovasz Local Lemma, we will impose another restriction
on the system of partitions P, namely, that each set P, ,; has size at most
Leldegt)edn for all g, 5,p,k, 1 < g<d,1<s<deg+1,1<p<d1<k<m.
We call this Property 7.

Then we proceed as in the previous random experiment, fixing partitions
in the same order as before, except that any choice of throwing an element
1 € N which violates Properties 2,3,7 is precluded. Property 7 enables us to show
that not too many choices are precluded for each element, and therefore, this
experiment stays close in behaviour to the previous one, except that Properties
2,3,7 are all automatically satisfied.

Suppose the partition that is being fixed currently is P, , ,. A position k for ¢
would cause a violation of Property 2 if ¢ occurs in some set Py g ;v which has
already been fixed. A position k for ¢ would cause a violation of Property 3 if
there exist k' < m and j € N such that 7 and j both already occur in By and j
already occurs in By,. A position & for i causes a violation of Property 7 if the size
of the set P, 5, 1 exceeds W after i is put in that position. All such
positions above are said to be bad for i in the current partition. The following
lemma shows that very few positions are bad for ¢ in any given partition, and
therefore, this new experiment behaves similar to the previous one; therefore,
Property 4 will continue to hold, but with a slightly modified proof. This proof
appears as part of the derandomization in Section 12 (see Corollary 2).

Lemma 4. The total number of bad positions for i when processing partition
Py s.p is at most %. Therefore, each element i is distributed uniformly

over a range of at least m(1 — T

W) sets in the first partition of any sub-

>



group and over a range of at least (1 — sets in the other partitions

6
d’*(deg+1)*d)
of any subgroup in the above random experiment.

Proof. Since all previous partitions (suppose there are x of these) have been
fixed so far satisfying Properties 2, 3 and 7, the size of the largest column is at
most mn'd'*(d;g-{-l)*d )

The number of bad positions for ¢ violating Property 2 is at most x. The
number of bad positions k for ¢ violating Property 3 is at most ww z2.
This is because k is bad if there exist j € N and k' < m such that i and j both
already occur in By and j already occurs in By; the number of js can be at most,
mw xx (all elements in the at most z columns already containing i are
candidates) and the number of k's for each such j is at most z. The number of bad
positions for ¢ violating Property 7 is at most m. The total number of

3 n'd x(deg+1)*d
m

bad positions is thus at most 3 since x

m m
d'*(deg+1)*d — d'x(deg+1)*d

The last statement follows if n’ < m?, ie, € < 1/2.

12 Derandomization using Conditional Probabilities

First, we describe our pessimistic estimator. Subsequently, we show how to use
it for derandomization.

12.1 The Pessimistic Estimator for Conditional Probabilities

We order all the subgroups globally. At any instant in our new randomized ex-
periment, we will be processing a particular partition in some subgroup. All
previous partitions would have been fixed and all subsequent partitions are cur-
rently untouched. Further, the positions of some elements in the current partition
would also have been fixed. Before defining the estimator, we need the following
definitions.

Definitions. We classify all subgroups in a partly fixed set system H into 3
classes: completely fized, partly fived and untouched.

Let U = %. By Lemma 4, U is an upper bound on the number of
bad locations in any partition.

Consider a particular subgroup s and a valid collection S. Let r5(S) be the
number of sets in S in the right side of subgroup s and r.(S) = maz(m/2 —
rs(S) — U,0). Let 5 ,(S) be the number of sets in S in the left side of the pth
partition of the sth subgroup and [, ,(S) = maz(m/2 —I5,(S) — U,0).

For each subgroup s, i € N, valid collection S, define h(s,i,S, H) as follows.
h(s,i,S, H) will be a lower bound on the probability that element i is not covered
by S in subgroup s. There are several cases, and the definition of h(s,i, S, H) is
different in each case.

1. If i is already covered by S in any of the subgroups fixed in the partially
fixed set system H, h(s,i,S, H) = 0. Otherwise, one of the following cases
holds.



2. Subgroup s has already been fixed and element i is not covered by S in H.
Then h(s,i,S,H) = 1.

3. Element i has not yet been fixed in the first partition of the sgbgroup s and
is not covered by S in H. h(s,i, S, H) = (§ — L)(3) 4 11,3,

4. Element ¢ has been fixed in the first partition of subgroup s but not in all the
partitions of the subgroup. Suppose partition p > 1 of subgroup s is being
fixed currently. If 4 lies the right side of the first partition of the subgroup s,
then h(s,i,S, H) = 1 and if i lies in the left side of the first partition of the

subgroup s, h(s,i,S,H) = Hp’zplsg/(j)'

Now define another quantity g(i, S, H), which will be shown to be an upper
bound on the probability that i is covered over the remaining choices, as 1 —
Ish(s,i,S, H), the product being over all subgroups s which haven’t been fixed
completely. Finally, define f(S, H) = II,¢(i, S, H), which will be an upper bound
on the probability that every element ¢ is covered by S.

The pessimistic estimator F(H) is defined as )4 f(S, H), where the sum is
over all valid collections S. This will turn out to be an upper bound on the the
expected number of valid collections S which cover .

Lemma 5. For any partial set system H, F(H) is an upper bound on the ex-
pected number of wvalid collections that cover N, the expectation being over all
random set systems that contain H.

Proof. Consider any valid collection S. Recall that there is a global ordering on
all subgroups, without any partition into groups. Let I, ,,(S), 5 ,(S), 75(S),75(S5)
be defined as above for each subgroup s and partition p. We prove below that
the probability that element 4 is not covered in subgroup s, conditioned on el-
ement 7 not being covered in all earlier subgroups and on any subset N' ¢ N
of elements being covered, is at least h(s,4,S, H). Then the probability that i
is not covered, conditioned on the set N’ of elements being covered, is at least
I h(s,i,S, H), the product being over all subgroups s that have not been com-
pletely fixed. Therefore, the probability that element 4 is covered, conditioned
on the above event, is at most 1 — IIsh(s,i, S, H) = ¢(i, S, H). The probability
that all elements are covered is consequently at most f(S,H) = H;g(i,S, H)
and the expected number of valid collections S that cover all elements is at most
F(H) = Y. /(S. H).

It remains to be shown that the probability that element ¢ is not covered in
subgroup s, conditioned on it not being covered in earlier subgroups and on any
subset N' C N of elements being covered, is at least h(s,i,S, H). We consider
various cases below which are the same as in the earlier definition of h(s,i, S, H).

1. i is covered in some subgroup by S. h(s,i,S, H) = 0 is clearly a lower bound.

2. Subgroup s is fixed and i is not covered anywhere in H by S. Then h(s,i, S, H)
1 is exactly the probability that i is not covered in s.

3. Element i is not yet fixed in the first partition of s, and it is not yet cov-
ered by S. Then the probability that i is not covered by S in this subgroup



is the sum of the probabilities of not being covered in the left and in the
right. The probability that i is placed in the right is the ratio of the num-
ber of good locations in the right to the total number of good locations.
This is at least W This is smaller than the actual value, because some
positions could become bad after the conditioning (recall that we want to
show that h(s,i,S, H) is a lower bound on the probability of not getting
covered in s, conditioned on not getting covered in earlier subgroups). The
probability that element i is not covered if placed in the right is at least

maz(m/2—rs(S)—U,0) . (S)
# good locations in the Tight = m/2 - Therefore the probability that ¢ is
not covered in the right is at least (1 — %)7;;/ Similarly, given that i is

placed on the left side, the probability that ¢ is not covered in partition p

maz(m/2_ Ls.p(5)=U;0) > L /(2) Therefore the probability

good locations in the left =

that i is not covered in the left is at least (1 — %)Hp(lsr';/(j)). The sum of

is at least
#

the above quantities is equal to h(s,,S, H).

4. 1 is fixed in the first partition of s, but not in all the partitions of s. Suppose
partition p > 1 is being fixed. If 4 lies in the right side of partition 1 of s,
h(s,i,S,H) = 1. If i lies in the left side of partition 1 of s, the probability

. . . I (S
that ¢ is not covered is at least h(s,i, S, H) = Hprz,,“”;—%), by an argument

similar to the one in case 1.

Let H = ¢ denote the set system at the beginning of the experiment, when
nothing has been fixed.
Lemma 6. F(¢) < (%)””7235
Proof. Consider any valid collection S. Let I5 ,(S), l§ ,(S),75(S), 7 (S) be defined
as above for each subgroup s and partition p. Then r4(S) + I ,(S) < 3Tm for
each s, p. In addition, > rs(S) +3_, ,15,(S) < Bmlogn'. We prove below that
the probability that element ¢ is not covered, II;h(s,i,S, H) > ,225 Then the
probability that i is covered, g(i,S,H) = 1 — II;h(s,i,S,H) < 1 — ,Qw From
this, it follows that the probability that all elements in N are covered is at most
F(S.H) = ;g(i. 8, H) < (1 — )™ < (L)

The above quantity, f(S, H) is an upper bound on the probability that a fixed
valid collection S covers N. So the expected number of such collections that cover

N is F(H) = Y ¢ f(S,H), where the sum is over all valid collections S. Since
"=ed s (deg+1)*d

there are at most 2" such collections, the expected number of such

. . —e g1 /11—228
collections is at most 2" ¢ *(deg“)*d(%)”

(%)”’17233, thus implying the lemma.
Finally, we show that IT;h(s,i,S, H) > ,zzﬁ The following simple fact will
be useful. We state it without proof.

Fact 1 II;—; (1 %) > (1 — 1) where Yo ai <z anda; < mr for all i and
r<l1.

. The above quantity is at most

We consider three cases. Let z3 = (I5,,(S) + U) in the following cases.



1.

of

2Ara(S)4U) 5 3

m _— 4
Since ls,p(:)+U + TS(nZ < 3 4+ 2U for each p, it follows that % <
b8 (50,5 ) 2 21— )T, e > L1 21— 3 - )% The

second inequality follows from the above fact. The number of such subgroups
is at most 43 log n'. Hence the product of h(s, i, S, H) over all such subgroups

4B logy n' L.
s is at least —lz 5 (%) 5 > —%7- This is because the product of 5(1— o)
3 4U)4ms

over all such subgroups is at least %n%ﬁ and the product (1 — 3

over all such subgroups is at least (%)w E (since >z, < Bmlogn').

2(rs(S)+U) < % and z, < %
Each (I;,(S) + U) < 7 since x5 = 3 (Isp(S) + U) < 7. Therefore

1
W < % Let the number of subgroups that satisfy the above con-

ditions be y. Since h(s,i, S, H) = (3 — Z)( m(/2) + 11, m;2)) = (%7’7;51(/%) +
311, m/(2))(1 — o), the product IT,h(s,i, S, H) = (1 — 5=)VI1,(% m(/Z) +

1Hp m/(2)). The above product is only over subgroups s that satisfy the

above conditions. The first term, (1 — %)’/ is at least % The second term,

I (2 m(/Z) + 5 H ;2)) can be expanded as a sum of 2¥ terms, each corre-
sponding to a set A C {1,...,y}. The term corresponding to one such set
l”’/(s) We show that each such term is at least

A is zi scA m(/Z)H

37 =375 For each s € A, /2) S };’U with 2(rs(S) + U) < 2m. For

each s € A and for all p, L, P/(Q) =1- # with 25 ,(S) + U) < im <
3m. In addition, }_ . ,(rs(S) + U) + > sgap<allsp(S) +U) < fmlogn' +
2d' x(deg+1) xdU because 3mlogn’ is an upper bound on the number of sets

88m log n’
Tm

chosen in S. Usmg the above fact, the term for A is at least 5 (1—2)
which is at least 55 ,15[,/3 Therefore the product over all subgroups satisfy-
ing this case is a‘r leas‘r ,63

A < § and v, >

Then (1 W) > 11 But there are at most 431logn’ such subgroups
s with z, > 2. Since h(s,i,5,H) > £(1 - %)(1 - W) the product
of h(s, z S, H) over all such subgroups is at least 1(1)4Floe " which is at
least —7

1
1

Therefore the product of h(s,i, S, H) over all subgroups gives a lower bound

/22[5

Corollary 2. The randomized experiment succeeds in giving the required parti-
tion system P with probability at least %

12.2 The Derandomization

We now use the method of conditional probabilities to find such a set system. At
each step of the experiment, the position of some element ¢ is being fixed. This



position is chosen from only those possibilities that do not cause a violation
of properties 2,3,7. From Lemma 4, there is a large set of choices which do
not cause a violation of properties 2,3,7. We need one that would not cause a
violation of property 4. Suppose the current partial configuration is H. For each
possible configuration Hj, resulting from the choice of position k for element i,
we compute the value of the estimator F'(Hj). The lemma below shows that
F(H) is at least as much as the average of F'(H},) over all k that can be chosen
(recall that a choice is made from the set of positions that are not bad). If
F(H) < 1, there exists a k such that F(Hy) < 1. By Lemma 6, F(¢) < 1. So
at each step of the experiment one can find a choice that does not increase the
value of the estimator. Since F'(H) is an upper bound on the expected number of
valid collections S that cover IV, we eventually get a set system with the desired
properties.

Lemma 7. Let H be a partial set system at instant t for the random experiment
and suppose the position of element i is being fixed at the present instant. Let
Hy, denote the configuration corresponding to the choice of k as the position for
i. Then F(H) is at least as much as the average of F(H},) over all possible good
choices k.

Proof. We show that the term for each valid collection S, f(S,H) is at least
as much as the average of f(S, Hy) over all possible choices k for i at instant
t + 1 in the random experiment. Since F(H) = ) 4 f(S, H), the lemma then
follows. For i’ # i,9(i', S, H) = g(i',S,H). Since f(S,H) = II.g(z,S,H), it
suffices to show that ¢(i,S,H) > m >k (9(i, S, Hy)). Recall that

g(i,S,H) = 1 — II;h(s,i,S, H), the product being over subgroups s that have
not been completely fixed.

Suppose that the pth partition of the sth subgroup is being fixed currently.
Then there are two cases : p = 1 and p > 1. First, consider the case p = 1. Then

90,8, H) =1 h(s,i, S, H)1ys,h(s'i, 8, H) = 1 - (§ = L)%= 1+ LB o),
U (S)

where a = IT, -1 ( 5;77’1'/2 )and 8 = Iys,h(s',i,S, H). g(i,S, Hy) = 1if i gets
covered in Hy. If i is not covered but is placed in right side, g(i, S, Hy) = 1 — .
If 4 is not covered but is placed in the left side, g(i, S, H;) =1 — af.

Let b; and by denote the number of bad locations in the left and right sides
respectively and b = by + bs. Let ¢g; denote the number of bad positions in the
left which are in S and g] denote the number of bad positions in the left which
are not in S. Similarly g» denotes the number of bad positions in the right which
are in S and g} denotes the number of bad positions in the right not in S. Then
g1+ gy = br and ga + gy = ba. Let g = g1 + go. Then I;1(S) +75(S) — g > 0,
m/24+g1—151(S)—by > 0and m/2+gs—rs(S)—bz2 > 0. The average of g(i, S, H,)
over all k£ that are good in the random experiment for i is exactly % +
m/2+g17;lji)1(5)*bl (1—af)+ m/2+gz;n*:’g(5)*b2 (1-8)=1- m/2+917;lji)1(5)*bl af —
m/2t9> S =b2 g Gince p! (S) = maz(m/2—rs(S)—U,0) < m/2—ry(S)—by+gs

and I/ (S) = maz(m/2 — 1,1 (S) = U,0) < m/2 — 1,1(S) — by + g1, the lemma
follows.




Next consider the case p > 1. Then ¢(i, S, H) = 1—h(s,i,S, H) y~sh(s',i,S, H) =

1 (%2)y8 where § = Iusih(s',i,S,H) and 7 = 1if p = d, the last

I (S
partition in the subgroup, and is Hp:>p(L()

Tz ) otherwise. ¢(i, S, Hy) = 1 if
i gets covered and it is 1 — vf if it does not get covered. Let by, g1,g] be
as defined above. Then the average of g(i,S, Hy) over all valid k at this in-

stant is lﬂ:;g):bfl + m/2+i‘1/72li§1(5)7b‘ (1—-v8)=1- m/u*‘;‘lﬁljgfs)*blyﬁ. Since

Iy p(S) =max(m/2—1,,(S)=U,0) <m/2+ g1 — 15 ,(S) = br, the lemma follows.

13 Showing Hardness under NP = ZPP

This requires starting with a proof system for NP satisfying the following prop-
erties: all but (5) below are satisfied by [RS97,AS97]. We are currently exploring
whether (5) can be satisfied.

1. A constant number of provers, say p.
2. O(logn) bit of randomness.

3. Error probability which is O(——).
4

5

logk n

. O(loglogn) answer sizes.

. O(n?) degree for some small enough constant §; the degree is the number
of random strings for which a particular question is asked of a particular
prover.

6. The questions asked of a particular prover are uniformly distributed over
a set of all possible questions asked of this prover (this is the uniformity
property).

7. The cardinalities of the sets of all possible questions asked of each prover are
the same (this is the equality property).

8. For each random string generated by the verifier and for each answer by the
first prover to the question generated by this random string, there is at most
one combination of answers for the remaining provers for which the verifier
accepts (this is the uniqueness property).

9. The set of answers returned by a prover is disjoint from the set of answers
returned by any other prover (this is the disjointness property).

The corresponding label cover abstraction for this would be a Label Cover in a
multi-layered hypergraph. The number of layers equals the number of provers. A
hyperedge is a collection of vertices, exactly one from each layer, and corresponds
to one question asked by the verifier to each of the provers. Since the verifier
uses only O(logn) random bits, there are a polynomial number of vertices and
hyperedges in this hypergraph. Further, the uniformity property ensures that
the 7th component of a random hyperedge is uniformly distributed over the ith
layer of vertices (this will be useful in the counterpart of Lemma 3 which we will
need now).

The new Label Cover problem now involves giving labels to the vertices so
that as many hyperedges as possible are made consistent. These labels corre-
spond to the answers returned by the provers. It is guaranteed now that either



1

all edges can be made consistent or at most O(log—pn

) edges can be made consis-
tent (here p is the number of provers).

The uniqueness property ensures that for a particular hyperedge and for any
way of labelling the first vertex in this hyperedge, there is a unique labelling to
the other vertices in this hyperedge which will lead to consistency for this hyper-
edge. Since the answer sizes are O(loglogn), the pool of labels is O(polylog(n))
in size. Since the degree is O(n?), the number of hyperedges incident on a vertex
is O(n?) (this is the value of deg now). With these observations, it can be seen
that only the following changes need to be made in our construction of SC.

The edges of the hypergraph are coloured using O(p#*deg) colours. As before,
the sets corresponding to vertices in the first layer will be associated with the left
sides of a partition. The sets corresponding to vertices in the remaining layers
will be associated with the right sides of a partition. These are defined as follows.

We will now have a partition system P but with n’ = n¥, for some constant
y. For a vertex v which is not in the first layer and for a label a given to this
vertex, the set Cy(v,a) = Ueer, {(e,1)|i € Py core).1,k ), With m/2 < k < m, as
before. For a vertex v which is in the first layer and for a label a given to this
vertex, the set Cj (v, a) is now defined as follows. Let f.(a) = (ba, ..., bx) be now
defined as the unique labelling to the other vertices in e which makes hyperedge
e consistent, given that the first vertex has label a. For each k = 1...m/2,
Ck ('U, a) = Ue:(v,vg,...,vk)EEv{(e7i)|i S sz,col(e),a,k AVE' = m/2 +1... mV] 2 <
J <p,(ei) & Cp(vj,b;), where fo(a) = (ba,...,bx)}.

Intersection properties follow as before (but using the disjointness property
as well); note that deg has gone up but the earlier argument (see Lemma 4)
works as long as deg = O(n®) for some small enough 6. Next, if all hyperedges
are satisfied by some label cover, then the minimum set cover has size at most
5 times the total number of vertices. We now prove a statement analogous to
Lemma 3 that a small set cover leads to several hyperedges being satisfied.

If the optimum set cover size is a suitable constant times gm logn? times the
number of vertices, then by the uniformity property, several hyperedges have a
total of at most M = M labels each. Call a label a for vertex v heavy
if at least m/4 sets of the form C,(v,a) are picked in the optimum set cover.
Consider one such hyperedge e = (v,v2,...,vp). It now suffices to show that
there exists a consistent labelling (a, ba,...,b,) of vertices in this hyperedge e
comprising only heavy labels. Then, a random choice at each vertex now satisfies

a O(=—) fraction of the edges.

logP n
Suppose this is not true, i.e., each consistent labelling of the vertices of e has
a light label. Then we derive a contradiction by showing that all tuples of the
form (e, i), 1 <i < n¥, could not possibly have been covered by the sets in the
(claimed) optimum set cover being considered.

Since we have fixed e, we will just talk in terms of covering all i, 1 < i < n¥,
instead of (e,7). We say that set C.(%,*) contains i if (e,4) is in this set. Thus
we can talk of each set in the claimed optimum set cover containing or not
containing some of the 4’s in the range 1...nY.



We now derive a contradiction by exhibiting a new collection of sets whose
union contains all the is covered by the sets in the claimed optimum set cover,
and in which the following two properties hold: i) this collection has at most 2M
sets and, ii) no more than 3m /4 sets come from any single partition. By Property
4, this new collection could not have covered all the is. The contradiction follows.

The new collection of sets is obtained as follows. Start with the claimed
optimum cover and do the following for each consistent labelling (a, ba, ..., bp)
of the vertices of e. If a is light for » then do nothing. Otherwise, there is a light
label b;; then discard sets of the form C, (v, a) in the claimed optimum set cover
and include all m/2 sets of the form {i|i € Py, co(c).a,x} (One set for each k from
1...m/2). Performing the above for all consistent labellings of the vertices of e
gives the new collection of sets.

It remains to show that this collection has the required properties. Note that
UZIZ/bejycol(e),a,k contains all the is that are contained in sets of the form C, (v, a)
in the claimed optimum set cover. Clearly, since b; is light, the new collection
does not contain more than 3m/4 sets from any partition. Further, the total
number of sets in the new collection is at most 2M (at least m/4 sets must be
discarded for m/2 new sets to be added). This completes the proof.



