
Faster Suffix Tree Construction with Missing Suffix Links �
Richard Cole

Courant Institute, NYU

cole@cs.nyu.edu

Ramesh Hariharan
Indian Institute of Science

ramesh@csa.iisc.ernet.in

ABSTRACTWe
onsider suÆx tree
onstru
tion for situations with miss-ing suÆx links. Two examples of su
h situations are suÆxtrees for parameterized strings and suÆx trees for 2D arrays.These trees also have the property that the node degreesmay be large. We add a new ba
k-propagation
omponent toM
Creight's algorithm and also give a high probability per-fe
t hashing s
heme to
ope with large degrees. We showthat these two features enable
onstru
tion of suÆx treesfor general situations with missing suÆx links in O(n) time,with high probability. This gives the �rst randomized lineartime algorithm for
onstru
ting suÆx trees for parameter-ized strings.
1. INTRODUCTIONThe SuÆx Tree of a given string of length n is the
ompa
tedtrie of all its suÆxes. This tree has size O(n) and
an be
onstru
ted in O(n) time [10; 14; 13℄. SuÆx trees haveseveral appli
ations (see [7℄). One of the main appli
ationsof suÆx trees is to prepro
ess a text in linear time so asto answer pattern o

urren
e queries in time proportionalto the length of the query and independent of the length ofthe prepro
essed text. The prepro
essing involves buildingthe suÆx tree for the text. Next, given a query pattern,the unique path down the suÆx tree tra
ed by this patternis determined; ea
h leaf of the tree whi
h lies further downfrom this path
orresponds to an o

urren
e of the pattern.Parameterized SuÆx Trees. Baker [1℄ generalized thede�nition of suÆx trees to parameterized strings, i.e., stringshaving variable
hara
ters or parameters in addition to theusual �xed symbols. The set of parameters and the set ofsymbols are disjoint. Two parameterized strings are said tomat
h ea
h other if the parameters in one
an be
onsistentlyrepla
ed with the parameters in the other to make the two�This work was supported in part by NSF grants CCR-9503309 and CCR-9800085.

string identi
al. Here,
onsisten
y demands that all o

ur-ren
es of a parti
ular parameter are repla
ed by the sameparameter and distin
t parameters are repla
ed by distin
tparameters. Baker [1℄ gave a de�nition of suÆx trees forparameterized text strings t so as to fa
ilitate answeringpattern o

urren
e queries in time independent of the textlength jtj.2D SuÆx Trees. Gian
arlo [6℄ generalized suÆx trees totwo-dimensional texts t in order to answer pattern o

ur-ren
e queries (i.e., �nd all o

urren
es of a given squarearray p in the square text t) in time independent of jtj.SuÆx Tree Constru
tion. There are several algorithmsfor
onstru
ting the suÆx tree of a string drawn from a
onstant-sized alphabet set in O(n) time. These in
lude thealgorithms by M
Creight [10℄, Weiner [14℄ and Ukkonen [13℄.All these algorithms exploit an important property of suÆxtrees, namely, ea
h node has an outgoing suÆx link.Fara
h [4℄ showed how to
onstru
t suÆx trees in O(n) timeeven when the alphabet size was not
onstant but some poly-nomial in n. This algorithm di�ers from the others above inthat it is not sweep-based and seems to be less
riti
ally de-pendent on the existen
e of outgoing suÆx links. However,it requires renaming pairs of adja
ent
hara
ters to get astring of size half that of the original string. The suÆx treefor this smaller string is built re
ursively; Fara
h shows howthe suÆx tree of the original string
an be obtained fromthe suÆx tree of this smaller string in O(n) time.In
ontrast to suÆx trees for strings, suÆx trees for bothparameterized strings and 2-D arrays la
k the suÆx linkproperty, i.e., there
ould be nodes in the tree without anoutgoing suÆx link de�ned. In addition, the node degrees inthese suÆx trees need not be bounded by a
onstant. Dueto these two problems, the best
onstru
tions known untilre
ently for suÆx trees for parameterized strings [1℄ and 2-Darrays [6℄ took O(n log n) time, where n is the size of the in-put string/array. In ea
h
ase, the problem of missing suÆxlinks was handled by using a dynami
 tree data stru
ture[12℄; this data stru
ture is used to �nd the insertion siteof the next suÆx in O(log n) time. Further, the problem oflarge node degrees was handled by the standard approa
h ofmaintaining a binary sear
h tree, whi
h also gave a �(log n)overhead.Re
ently, Kim and Park [9℄ used the paradigm of Fara
h [4℄to give an O(n) time algorithm for 2-D suÆx tree
onstru
-tion (for polynomially bounded alphabet size). However, itis not
lear how to apply this paradigm to the
ase of pa-rameterized strings. In parti
ular, it is not
lear how therenaming of pairs of adja
ent
hara
ters mentioned above

an be a

omplished in su
h a way that the suÆx tree ofthe given string
an be obtained from the suÆx tree of therenamed string in O(n) time.Our Contribution. We present two new tools in this pa-per.(i) The �rst tool is aimed at ta
kling the problem of miss-ing suÆx links. We augment M
Creight's algorithm with anew feature whi
h
opies nodes ba
kwards (imagine suÆxlinks as going forwards), thus adding additional nodes andsuÆx links to the suÆx tree. Using a non-trivial a

ountingpro
edure, we show that this ba
k-propagation adds onlyO(n) extra nodes and a

omplishes the
onstru
tion of thesuÆx tree in O(n) time even with missing suÆx links. Theba
k-propagation is similar to fra
tional
as
ading, as usedin many pointer based data stru
tures of bounded degree(when viewed as graphs); the diÆ
ulty here is that the de-grees are potentially unbounded, whi
h appears to ne
essi-tate a quite di�erent analysis.(ii) The time analysis in (i) assumes that given a node xand a
hara
ter a, the unique edge from x to a
hild of xstarting with the
hara
ter a is
omputable in O(1) time. Toenable this for high degree nodes x, we give an extension ofthe dynami
 version of the Fredman-Komlos-Szemeredi per-fe
t hashing s
heme [5℄ whi
h supports insertions of itemsfrom a polynomial sized range in amortized
onstant timeand linear spa
e, with high probability (as
ompared to theprevious expe
ted time result of Dietzfelbinger et al. [2℄).Sear
hing for an item requires worst
ase
onstant time. Infa
t, the items being in a polynomial sized range is not ne
es-sary for our hashing s
heme; it suÆ
es if they
an be hashedinto a polynomial sized range in linear time.The above two tools provide a uni�ed framework from whi
hrandomized O(n) time algorithms for
onstru
ting suÆxtrees for regular strings, parameterized strings and 2-D ar-rays are easily derived. These algorithms work with highprobability. This is the �rst O(n) time randomized algo-rithm for parameterized suÆx tree
onstru
tion; the pre-vious best algorithm[1℄ took O(n log n) deterministi
 time.The suÆx trees we
onstru
t also have the property thatthe unique path in the tree
orresponding to a given pat-tern string p
an be found in O(p) time, regardless of thedegrees of the nodes.
2. THE GENERAL SETTINGBefore des
ribing our algorithm, we des
ribe the general set-ting for whi
h our algorithm works. We need the followingde�nitions.Compa
ted Trie. A
ompa
ted trie is a tree data stru
-ture de�ned on a
olle
tion of strings. This tree has one leafper string in this
olle
tion, and ea
h internal node has atleast 2
hildren. Therefore, the number of nodes is linear inthe number of strings in the given
olle
tion. Ea
h edge ofthe tree is asso
iated with (or labelled with) some substringof one of the strings in the given
olle
tion. The key prop-erty is that for every pair of leaves, the string formed by
on
atenating the edge labels on the path from the root tothe least
ommon an
estor of these two leaves is the longest
ommon pre�x of the strings asso
iated with the two leaves.In this paper, we are interested in
ompa
ted tries of
ertainkinds of string
olle
tions.

Quasi-SuÆx Colle
tions. An ordered
olle
tion of stringss1; s2; : : : ; sn is
alled a quasi-suÆx
olle
tion if and only ifthe following
onditions hold. Let jsj denote the length ofstring s.1. js1j = n and jsij = jsi�1j � 1. Therefore, jsnj = 1.2. No si is a pre�x of another sj .3. Suppose strings si and sj have a
ommon pre�x oflength l > 0. Then si+1 and sj+1 have a
ommonpre�x of length at least l� 1.We will assume that all the strings are drawn from an al-phabet of size polynomial in n.Chara
ter Ora
les. Note that the total length of thestrings in a quasi-suÆx
olle
tion of n strings is O(n2), whileour aim is to a
hieve O(n) time
onstru
tion for the
om-pa
ted trie. Therefore, we
annot a�ord to read the
ol-le
tions expli
itly. Instead, we will assume an ora
le whi
hsupplies the ith
hara
ter of the jth string of the
olle
tionon demand, in O(1) time.Multiple Quasi-SuÆx Colle
tions. Consider m distin
tquasi-suÆx
olle
tions, ea
h
olle
tion having at most nstrings. These m quasi-suÆx
olle
tions
onstitute a multi-ple quasi-suÆx
olle
tion if
onditions 2 and 3 above hold forany pair of strings si; sj over all the m
olle
tions (in otherwords, these
onditions hold for pairs within ea
h
olle
tionand for pairs drawn from distin
t
olle
tions as well).Our main result will be the following.Theorem 1. Let � be any positive
onstant. The
om-pa
ted trie of a quasi-suÆx
olle
tion of n strings
an be
onstru
ted in O(n) time and spa
e with failure probabilityat most O(logn)2�(n1��= logn) , given the above
hara
ter ora
le. Fur-ther, the
ompa
ted trie of a multiple quasi-suÆx
olle
tion
omprising m quasi-suÆx
olle
tions of at most n stringsea
h
an be
onstru
ted in O(nm) time and spa
e with fail-ure probability at most O(logmn)2�((mn)1��= logmn) ,
2.1 Examples of Quasi-Suffix CollectionsThe signi�
an
e of the above theorem
omes from the fol-lowing examples of quasi-suÆx
olle
tions. The simplestexample is the
olle
tion of all suÆxes of a string s witha spe
ial end-of-string symbol. This is a quasi-suÆx
olle
-tion but with a stronger property, namely,
ondition 3 in thede�nition of quasi-suÆx
olle
tions is satis�ed with equal-ity. The
ompa
ted trie of these suÆxes is the well-knownsuÆx tree of the string s. Next, we give two more signi�
antexamples, for whi
h equality need not hold in
ondition 3.
2.1.1 Suffix Trees for Parameterized StringsRe
all from the introdu
tion that a parameterized strings has parameters and symbols. The alphabet from whi
hparameters are derived is disjoint from the alphabet fromwhi
h symbols are derived. Further, both alphabet sizes arepolynomial in n, the length of s. As is standard, assumethat s ends in a symbol $ whi
h does not o

ur elsewhereis s. From s, Baker [1℄ de�ned the following
olle
tion ofstrings.Ea
h suÆx s0 of s is mapped to a string num(s0) with pa-rameters repla
ed by numbers and symbols retained as su
h(assume that symbols are not numbers). The repla
ement of

parameters is done as follows. The �rst o

urren
e of ea
hparameter in s0 gets value 0 in num(s0). Subsequent o

ur-ren
es of a parameter get values equal to the distan
e fromthe previous o

urren
e of the same parameter. Considerthe
olle
tion of strings fnum(s0)js0 suÆx of sg in de
reas-ing length order. Baker [1℄ de�ned the suÆx tree of param-eterized string s to be the
ompa
ted trie of this
olle
tion.That this
olle
tion of strings is indeed a quasi-suÆx
olle
-tion
an be seen as follows.Condition 1
learly holds and
ondition 2 follows from theo

urren
e of the spe
ial symbol $ at the end of s. Condition3 is shown to hold next. Note that if s0i and s0i+1 are two
onse
utive suÆxes of s, then num(s0i+1)
an be obtainedfrom num(s0i) as follows: for ea
h well-de�ned index k > 0,set num(s0i+1)[k℄ to num(s0i)[k+1℄ if num(s0i)[k+1℄ 6= k, andset num(s0i+1)[k℄ to 0, otherwise. Next,
onsider two suÆxess0i and s0j of s. From the above observation, it follows that ifnum(s0i) and num(s0j) have a
ommon pre�x of length k+1,then num(s0i+1) and num(s0j+1) have a
ommon pre�x oflength k. Further, if num(s0i) and num(s0j) di�er at lo
ationk+1, then num(s0i+1) and num(s0j+1)
ould be identi
al atlo
ation k if one of num(s0i)[k + 1℄; num(s0j)[k + 1℄ equals kand the other equals 0. Condition 3 is now easily seen tohold.The
hara
ter ora
le for the above quasi-suÆx
olle
tion iseasily implemented in O(1) time, after the following pre
om-putation: for ea
h o

urren
e of a parameter in s, determinethe previous o

urren
e, if any, of this parameter in s. Thispre
omputation is easily done in O(n) time.
2.1.2 Suffix Trees for 2-D ArraysConsider a 2-D array s having size m�n, m � n, and
har-a
ters drawn from some polynomial range. For ea
h squaresubarray s0 of s whi
h is maximal (i.e., tou
hes either theright boundary or the bottom boundary or both boundariesof s), Gian
arlo [6℄ de�ned a string num(s0) as follows.De�ning num(s0). Partition s0 into L's as in [6℄ (an L isformed by taking a pre�x of a row and a pre�x of a
ol-umn, with the
ommon point being at the bottom-right;both pre�xes have equal lengths; the resulting shape is a
-tually the mirror image of the
hara
ter L). num(s0) will bea sequen
e of numbers, one number for ea
h su
h L; thesenumbers are arranged in in
reasing order of L sizes. Thenumber for a parti
ular L is obtained by reading this L asa string and then mapping strings to integers in su
h a waythat distin
t strings map to distin
t integers (by using, forexample, the Karp-Rabin �ngerprinting s
heme [8℄, whi
hensures this property with inverse polynomial failure prob-ability). Finally, append a spe
ial end-of-string symbol $ tonum(s0), as was done for parametrized strings.The Quasi-SuÆx Colle
tions. Consider a parti
ular top-left to bottom-right diagonal and
onsider all maximal squaresubarrays of s with top-left point on this diagonal. Thenum() strings
orresponding to these subarrays are eas-ily seen to form a quasi-suÆx
olle
tion. Thus ea
h top-left to bottom-right diagonal gives a quasi-suÆx
olle
tionof strings. Sin
e there are m + n � 1 diagonals, we havem + n � 1 = O(m) distin
t quasi-suÆx
olle
tions in all.It is easy to
he
k that these m+ n � 1 quasi-suÆx
olle
-tions together
onstitute a multiple quasi-suÆx
olle
tion(we will use distin
t end-of-string symbols for ea
h diagonalto satisfy
ondition 2 for pairs of strings drawn from dis-tin
t
olle
tions). Note that the number of strings in ea
h

olle
tion is at most n. Gian
arlo [6℄ de�ned the
ommon
ompa
ted trie of these m+n�1
olle
tions to be the suÆxtree of s.The Chara
ter Ora
le. A
hara
ter ora
le whi
h workswith inverse polynomial failure probability in O(1) time af-ter O(mn) prepro
essing is easy to implement using theKarp-Rabin �ngerprinting s
heme. The prepro
essing in-volves
omputing pre�x sums for ea
h row and
olumn.
2.2 Proving Theorem 1The rest of the paper is devoted to proving Theorem 1. First,we will des
ribe how to
onstru
t the
ompa
ted trie of asingle quasi-suÆx
olle
tion of n strings in O(n) time withhigh probability. This algorithm
an be extended to multiplequasi-suÆx
olle
tions (like those resulting from 2D arrays)easily with an O(m) multipli
ative time and spa
e overhead(assuming m
olle
tions of at most n strings ea
h). Thisextension is sket
hed brie
y in Se
tion 6.Our algorithm for a single quasi-suÆx
olle
tion will havetwo
omponents. The �rst
omponent is a modi�
ation ofM
Creight's algorithm and is des
ribed in Se
tion 4 andSe
tion 5. In these se
tions, we will assume that the unique
hild of any given node with edge label beginning with agiven
hara
ter
an be determined in O(1) time. The se
ond
omponent, i.e., a dynami
 perfe
t hashing s
heme des
ribedbelow, will handle this problem.Note that in all the above examples of quasi-suÆx
olle
-tions, the alphabet size is a polynomial in n. Thus to a

essthe unique edge with a parti
ular starting
hara
ter from anode, we need to perfe
tly hash O(n) pairs, where the �rstentry in the pair is a node number and the se
ond entryis a
hara
ter from the alphabet. Ea
h su
h pair
an betreated as a number from a range polynomial in n. We givea dynami
 hashing s
heme whi
h will perfe
tly hash an itemfrom a polynomial in n range in Se
tion 7.Before giving our algorithms, we need an outline of M
-Creight's algorithm for
onstru
ting the suÆx tree of a string.
3. MCCREIGHT’S ALGORITHMThe use of suÆx links is
ru
ial to this algorithm. SuÆxlinks are de�ned as follows.De�nition. For a node x, let str(x) denote the substringasso
iated with the path from the root of the tree to x. AsuÆx link points from a node x to a node y su
h that str(y)is just str(x) with the �rst
hara
ter removed. Let link(x)denote this node y. Let par(x) denote the parent of x. For astring u, de�ne node(u) to be that node x, if any, for whi
hstr(x) = u.Sin
e
ondition 3 in the de�nition of quasi-suÆx
olle
tionsis satis�ed with equality for the
olle
tion of suÆxes of astring, suÆx links are de�ned for ea
h node x in the suÆxtree, i.e., for ea
h node x, a node y = link(x) with the abovedes
ription exists.M
Creight's
onstru
tion inserts suÆxes into the suÆx treeone by one, in order of de
reasing length. For ea
h suf-�x, one new leaf and possibly one new internal node areinserted. This sequen
e of insertions
an be divided intophases. There are two kinds of phases, s
anning and res
an-ning.A s
anning phase begins with a hitherto unread portion ofthe input string being s
anned and a portion of some path

down the suÆx tree being traversed,
ulminating in the in-sertion of a new leaf as a
hild of a new or existing internalnode x1. Portions of the suÆx tree traversed in this s
anningstep are
alled s
anned portions. Subsequent to this s
an-ning, a res
anning phase begins in whi
h a series of internalnodes x2; : : : ; xk is inserted1, without the text being s
annedany further. xi's suÆx link points to xi+1, 1 � i � k � 1;further, xk's suÆx link points to an already present nodexk+1. The next s
anning phase begins by s
anning the treedownwards from xk+1.The pro
ess of inserting xi+1, following the insertion of xi,1 � i � k � 1, is as follows. The tree is res
anned down-wards from link(par(xi)) until the right position for xi+1is found. Res
anning requires determining that path downthe tree from link(par(xi)) whose edge labels form the samesubstring as the label on the edge between par(xi) and xi.Su
h a path is guaranteed to exist by
ondition 3 in thede�nition of quasi-suÆx
olle
tions; further equality in this
ondition implies that the termination point of this path isthe right lo
ation for xi+1. Sin
e the above path is guaran-teed to exist, it suÆ
es to examine just the �rst
hara
ter onea
h edge to determine this path, as opposed to examiningall the
hara
ters
omprising the edge label; thus the termres
anning as opposed to s
anning.
4. OUR ALGORITHMAs in M
Creight's algorithm, we will insert the strings inthe given
olle
tion s1; : : : ; sn in the
ompa
ted trie in de-
reasing order of length. Mu
h of the algorithm remains thesame; however, we make two key modi�
ations. The �rst in-volves traversing the path up the tree from a newly insertednode to �nd an an
estor with a suÆx link. The se
ond in-volves
opying nodes ba
kwards while res
anning down thetree from the destination of the above suÆx link. These
hanges a�e
t only the res
anning algorithm; the s
anningpart remains un
hanged. We des
ribe these
hanges in de-tail next.De�ning SuÆx Links. For a node x, link(x) is now de-�ned to be that node y su
h that if str(x) is a pre�x ofsome si then str(y) is a pre�x of si+1; further jstr(y)j =jstr(x)j � 1. Note that sin
e
ondition 3 in the de�nition ofquasi-suÆx
olle
tions need not be satis�ed with equality,link(x) need not be de�ned for every node x. Also notethat if link(x) exists then it is unique; this follows be
auseif str(x) is a pre�x of si and of sj then si+1 and sj+1 agreein the �rst jstr(x)j � 1
hara
ters.Ba
king Up. Re
all the pro
ess of inserting xi+1, followingthe insertion of xi, 1 � i � k � 1, from our des
riptionof M
Creight's algorithm above. Now, sin
e link(par(xi))need not be de�ned, we must traverse up the tree from xiuntil a node with a suÆx link de�ned is found. We
all thisnode nan
(xi) (nan
 stands for nearest an
estor). Next, thetree is res
anned downwards from link(nan
(xi)), as before.See Figure 1.Real and Imaginary Nodes. Re
all from our des
riptionof M
Creight's algorithm above that a res
anning phase ter-minates when it is found that the suÆx link of xk points to1With ea
h of these internal nodes, a
hild leaf
orrespond-ing to a new suÆx is also inserted.

ba
king up to�nd suÆx link
nan
(x)

x

suÆx link pointing forwards

Imaginary NodeBa
k-propagated NodeReal Node
newly inserted node

withres
anningba
k-propagation

Figure 1: Ba
king up and Ba
k-propagation
str(x)

x si
si�1

sj�1 sjba
k-propagated in dire
tion bba
k-propagated in dire
tion aa b

Figure 2: Dire
tion of Ba
k-propagation

an already existing node xk+1. In our situation, the ter-mination
ondition of a res
anning phase is di�erent. Ares
anning phase ends when it is found that either:1. xk's suÆx link points to an already existing node xk+1,or,2. xk's suÆx link is not de�ned, i.e., it points to the mid-dle of an edge.We introdu
e an imaginary node xk+1 in the latter
ase;note that this imaginary node has only one
hild and doesnot have an outgoing suÆx link. Internal nodes whi
h arenot imaginary will be
alled real; so x1 : : : xk are real andhave at least 2
hildren ea
h. The
urrent res
anning phaseends at xk+1 and a new s
anning phase begins by s
anningdownwards from xk+1.Note that there are just O(n) real nodes and O(n) imaginarynodes (at most one real internal node, one leaf, and oneimaginary node are inserted per suÆx). Sin
e real nodeshave at least two
hildren ea
h, imaginary nodes have justone
hild ea
h, and the number of leaves is n, the totalnumber of
hildren over all real and imaginary nodes is O(n).Also note that the total length of the s
anned portions ofthe tree in M
Creight's algorithm in O(n) and this remainsthe same for our algorithm. We state these fa
ts below forfuture referen
e.Fa
t 1. (i) The number of real and imaginary nodestogether is O(n).(ii) The total number of
hildren of real and imaginarynodes together is O(n).(iii) The total length of the s
anned portions of the treeis O(n) (the length of a single s
anned portion is thenumber of
hara
ters, not nodes, en
ountered in thepath s
anned).Ba
k-Propagated Nodes. Other than real and imaginarynodes, our
onstru
tion will involve internal nodes of a thirdkind,
alled ba
k-propagated nodes. Ba
k-propagated nodeswill always have suÆx links and only one
hild ea
h. Theyare de�ned as follows. In the following, think of suÆx linksas pointing forwards (see Figure 1).Suppose our algorithm has just inserted a node x. Whenthe appropriate path starting an link(nan
(x)) is res
annedin order to determine the node link(x), several nodes
ouldbe en
ountered in the pro
ess. If more than 2 nodes are en-
ountered, then alternate nodes are propagated ba
k to thepath (nan
(x); x) (i.e., new nodes with suÆx links pointingto the traversed nodes are set up on this path), taking
arethat the �rst and the last nodes traversed are not propagatedba
k. The new nodes are
alled ba
k-propagated nodes.Dire
tion of Ba
k-Propagation. Note that a node
ouldbe ba
k-propagated in several di�erent dire
tions, i.e., sev-eral ba
k-propagated nodes
ould have their suÆx links point-ing to this node. Further, a ba
k-propagated node
ouldbe propagated ba
kwards further, forming a
hain of ba
k-propagated nodes.De�nitions. For a node x, let prev(x) be a set of stringsde�ned as follows. For ea
h si in the given quasi-suÆx
ol-le
tion having pre�x str(x), prev(x)
ontains the pre�x of

si�1 of length jstr(x)j + 1. Note that prev(x) is a set andnot a multiset; therefore all strings in it are distin
t. Dire
-tion a is said to be valid for node x if string a appears inprev(x). Node x is said to be ba
k-propagated in dire
tion aif there exists a string a in prev(x) su
h that node(a) existsand is a ba
k-propagated node (see Figure 2). Note thatthe suÆx link of node(a) points to x under these
onditions,i.e., link(node(a)) = x.The following invariant is maintained by our algorithm byvirtue of the fa
t that only alternate nodes en
ountered areba
k-propagated and the �rst and last nodes en
ounteredare not ba
k-propagated.Invariant 1. If a node x is ba
k-propagated in dire
tiona then its parent is not ba
k-propagated in dire
tion a0, wherea0 is a pre�x of a.
5. TIME COMPLEXITYThere are two aspe
ts to the time taken. The �rst involvesba
king-up from x to nan
(x), subsequent to the insertionof x. The se
ond involves res
anning the appropriate pathdown from link(nan
(x)) until link(x) is lo
ated. We a
-
ount for these two aspe
ts of the time separately.We make a few remarks on the se
ond aspe
t here. Ea
hstep taken here involves one of the following:1. Creating a new ba
k-propagated node.2. Adding a suÆx link to an already existing node. Thishappens when one seeks to ba
k-propagate a node butthe site of this ba
k-propagation is already o

upiedby some other node. For this to happen, the latternode must not have a suÆx link, i.e., it must be animaginary node. A suÆx link is now added to thisimaginary node.3. Creating a new real or imaginary node. This is thenode link(x).Sin
e only one real or imaginary node is added when res
an-ning from link(nan
(x)) to link(x), the time taken in thisres
anning is proportional to O(1) plus the number of nodesba
k-propagated in this pro
ess plus the number of imagi-nary nodes for whi
h suÆx links are set up in this pro
ess.Sin
e ea
h imaginary node
an get only one suÆx link dur-ing the
ourse of the entire algorithm, bounding the abovetime boils down to bounding the number of ba
k-propagatednodes by O(n).
5.1 Bounding Back-Propagated NodesThis will use a
harging argument, where ea
h ba
k-propagatednode will be
harged to either some real/imaginary node, orto some
hara
ter in the string s1. Ea
h real/imaginarynode and ea
h
hara
ter in s1 will be
harged O(1) in thepro
ess. The O(n) bound will follow from Fa
t 1. It maybe that a node
reated by ba
k propagation subsequentlybe
omes real or imaginary. These nodes are not
ounted;only nodes that are not real or imaginary when the full treeis built are
ounted.Note that a ba
k-propagation
hain always starts at a realor an imaginary node. We will de�ne a tree for ea
h real orimaginary node x as follows.De�ning BP�tree(x). All nodes in this tree other than theroot x are ba
k-propagated nodes. Those ba
k-propagated

nodes whi
h are ba
k-propagated from x (i.e., have suÆxlinks pointing to x) are
hildren of x in this tree. Treesrooted at these
hildren are de�ned re
ursively, i.e.,
hildrenof a node are those whi
h are ba
k-propagated from thatnode. The leaves of this tree are those nodes whi
h are notba
k-propagated at all.Consider the forest of BP � Trees(�) rooted at the variousreal/imaginary nodes that are ba
k-propagated. Ea
h ba
k-propagated node appears in exa
tly one tree in this forest.De
omposing BP �tree(x) into paths. We partition thenodes of this tree into paths. The �rst path is the minimalpath starting from the root x and ending on a node y withthe following property: either there exists a valid dire
tion asu
h that y has not been ba
k-propagated in this dire
tionor there is no valid dire
tion for y. Clearly, su
h a nodey must exist. But for the termination restri
tion, the pathstarting at the root is
hosen arbitrarily. On
e nodes in thispath are removed, the subtrees hanging o� this path arede
omposed re
ursively.Clearly, ea
h ba
k-propagated node will belong to exa
tlyone of the various paths formed above. Think of ea
h pathas going ba
kwards from its start node.A

ounting for long paths. We show that the sum ofthe lengths of all the paths obtained above is proportionalto the number of su
h paths plus O(n).Consider any path obtained above. Let x be any node onthis path, other than its start node. link(x) is the node fromwhi
h x was ba
k-propagated, in dire
tion, say a. Note thatlink(x) will pre
ede x in the path being
onsidered.By Invariant 1, the parent par(link(x)) of link(x) in the
ompa
ted trie has not been ba
k-propagated in the dire
-tion a0, where a0 is the pre�x of a su
h that ja0j equalsjstr(par(link(x)))j+ 1; a0, of
ourse, is a valid dire
tion forpar(link(x)) (be
ause a is valid for link(x) itself). It fol-lows that either par(link(x)) is a real/imaginary node orpar(link(x)) is a ba
k-propagated node and the last node inits path. In either
ase, we
harge par(link(x)) for x.Clearly, ea
h real/imaginary node and ea
h ba
k-propagatednode whi
h is the last node in its respe
tive path will be
harged an amount equal to the number of its
hildren, inthis pro
ess. From Fa
t 1(ii), this
harge sums to O(n)for real/imaginary nodes. Note that ba
k-propagated nodeshave only one
hild ea
h. Thus, it now suÆ
es to bound thetotal number of paths.Bounding the total number of paths. We will extendthe above paths ba
kwards to form a
olle
tion of extendedpaths, as below.Consider any one path, and let x be the last node on thispath. The extension to this path is performed as follows.Start at x and follow that dire
tion ba
kwards along whi
hx was not ba
k-propagated (there is at least one su
h dire
-tion, unless there are no valid dire
tions for x). Next, repeat-edly follow any arbitrarily
hosen valid dire
tion ba
kwards.This extension need not always en
ounter a node (in fa
t wewill stop when we hit a node); it is allowed to
ut throughedges 2. So if a parti
ular step of this extension leads to the2We have de�ned valid dire
tions only for nodes in the
om-pa
ted trie. However, this de�nition
an be extended forpoints in the middle of an edge in the obvious way, i.e., byimagining as if a node is present at that point.

middle of an edge e, take an arbitrary valid dire
tion ba
kfrom that
hara
ter on e. Continue this extension until ei-ther a node is rea
hed or there is no valid dire
tion left togo further.Thus an extended path
onsists of an initial pre�x of nodes(i.e., the path itself), followed by a walk whi
h
uts throughedges, and possibly terminates on a node. Again, note thatwe think of a path as going ba
kwards. We have the follow-ing
laims.Lemma 1. Two distin
t extended paths
annot interse
t(i.e., they
annot
ut through the same point on some edgeor have a node in
ommon), ex
ept that the last node of one
an be the �rst node of the other.Proof. Sin
e forward dire
tions are always unique, two ex-tended paths
an interse
t otherwise only if the start nodeof one path is
ontained in the other path and is not thelast node on that path. This is a
ontradi
tion sin
e all theunextended paths begin at nodes, the unextended paths arenode disjoint, and the extension of a path terminates as soonas a node is rea
hed. 2Lemma 2. If an extended path terminates by rea
hing anode y (and not by running out of valid dire
tions), then y
annot be a ba
k-propagated node.Proof. Let x be the last node of the path whose exten-sion is under
onsideration. Suppose y is a ba
k-propagatednode. Then
learly, x must have been ba
k-propagated inthe dire
tion implied by y (note that there is a unique validdire
tion for x along whi
h it must be ba
k-propagated, aunique valid dire
tion along whi
h the resulting node mustbe ba
k-propagated, and so on, until y is rea
hed). But westarted the extension of this path by
hoosing a dire
tionalong whi
h x was not ba
k-propagated, a
ontradi
tion. 2Lemma 3. The total number of paths is O(n), and hen
ethe total number of ba
k-propagated nodes is O(n).Proof. Consider a parti
ular extended path. If it ends at anode without running out of valid dire
tions, this node mustbe real/imaginary, by Lemma 2; the
urrent path is then
harged to this node. By Lemma 1, ea
h real/imaginarynode is just
harged on
e.On the other hand, if this extended path ends be
ause allfurther valid dire
tions ba
kwards are exhausted, then thesubstring asso
iated with the termination point is a pre�xof s1. Further, by Lemma 1, di�erent extended paths whi
hend in this way are asso
iated with distin
t pre�xes of s1.Thus the number of paths is O(n).The lemma follows from the argument given earlier thatthe number of ba
k-propagated nodes is proportional to thenumber of paths plus O(n). 2
5.2 Backing-up TimeIt remains to a

ount for the time taken to determine nan
(x)after the insertion of x. Note that all su
h nodes x for whi
hnan
(x) will be determined are distin
t real nodes (be
auseea
h imaginary node starts a new s
anning phase).This
omputation requires traversing upwards from x un-til the nearest node with a suÆx link is found. All nodesen
ountered on the way must be imaginary (real and ba
k-propagated nodes have suÆx links) and we need to a

ountfor the time taken to traverse these nodes.

The key
laim is the following. Note that an imaginarynode y signals the beginning of a new s
anning phase inM
Creight's algorithm, in whi
h the tree is s
anned down-wards starting at y, until a new leaf is inserted as a
hild ofa new or existing internal node z.Lemma 4. The total number of times imaginary node y
an be en
ountered while determining nan
(�) over the en-tire algorithm is at most jstr(z)j � jstr(y)j.Proof. Note that z is a real node after the above s
anningphase starting at y �nishes. y
ould be en
ountered on
ewhile setting up link(z). Subsequently, sin
e link(z) is inpla
e, y will be en
ountered only when �nding nan
(z0),where z0 is real and on the path from y to z. There
an beat most jstr(z)j � jstr(y)j su
h distin
t real nodes z0. 2.Corollary 1. The total time taken in traversing imagi-nary nodes while determining nan
(�) is O(n).Proof. Follows from Fa
t 1 and Lemma 4. 2Theorem 1 now follows for quasi-suÆx
olle
tions, assumingthat the
orre
t
hild of a parti
ular node
an be foundin O(1) time. The extension to quasi-suÆx
olle
tions issket
hed next.
6. ALGORITHM FOR MULTIPLE QUASI-

SUFFIX COLLECTIONSWe sket
h how to extend the above algorithm to a multiplequasi-suÆx
olle
tion
omprising m quasi-suÆx
olle
tionsof O(n) strings ea
h. The time taken will be O(mn).SuÆx links and ba
k-propagation dire
tions need to be rede-�ned appropriately as follows. Let ski denote the ith string inthe kth quasi-suÆx
olle
tion under
onsideration (assumean arbitrary ordering on the m quasi-suÆx
olle
tions).SuÆx Links. For a node x, link(x) is now de�ned to bethat node y su
h that if str(x) is a pre�x of some ski thenstr(y) is a pre�x of ski+1; further jstr(y)j = jstr(x)j � 1.Note that sin
e
ondition 3 in the de�nition of quasi-suÆx
olle
tions need not be satis�ed with equality, link(x) neednot be de�ned for every node x. Also note that if link(x)exists then it is unique; this follows be
ause if str(x) is apre�x of ski and of sk0j then ski+1 and sk0j+1 agree in the �rstjstr(x)j � 1
hara
ters.Ba
k-Propagation Dire
tions. For a node x, let prev(x)be a set of strings de�ned as follows. For ea
h ski havingpre�x str(x), prev(x)
ontains the pre�x of ski�1 of lengthjstr(x)j+ 1. Note that prev(x) is a set and not a multiset;therefore all strings in it are distin
t. Dire
tion a is said tobe valid for node x if string a appears in prev(x).The Algorithm. The algorithm inserts ea
h
olle
tion inturn into the
urrent
ompa
ted trie. The �rst string of ea
hquasi-suÆx
olle
tion starts a new res
anning phase begin-ning at the root of the
ompa
ted trie. The subsequentstrings in the
olle
tion are inserted as in the previous al-gorithm. Note that the size of the
ompa
ted trie will nowbe �(mn). Fa
t 1
ontinues to hold with O(n) repla
ed byO(mn). The analysis is as before with the following two
hanges. All O(n) terms are repla
ed by O(mn). Further,in Lemma 3, if an extended path ends be
ause all furthervalid dire
tions ba
kwards are exhausted then the substring

asso
iated with the termination point is a pre�x of the �rststring in one of the m quasi-suÆx
olle
tions being
onsid-ered.
7. THE HASHING SCHEMERe
all from Se
tion 2.2 that we need to perfe
tly hash O(n)pairs, where the �rst entry in ea
h pair is a node number andthe se
ond entry is a
hara
ter from the alphabet. Ea
h su
hpair
an be treated as a number from a range polynomial inn. We give a dynami
 hashing s
heme whi
h will perfe
tlyhash an item from a polynomial in n range in O(n) time,with high probability. The time taken to a

ess a parti
ularitem will be O(1) and the total spa
e is O(n).Fredman-Komlos-Szemeredi [5℄ showed how n items fromthe range [0 : : : poly(n)℄
an be hashed into the range [0 : : : s℄without any
ollisions, where s = �(n). Their algorithmtakes O(n) time and spa
e and works by
hoosing randomlyfrom a family of almost-universal hash fun
tions (assuming
onstant time arithmeti
 on O(log n) bits). It ensures no
ollisions with probability at least 1=2.This was generalized by Dietzfelbinger et al. [2℄ to the dy-nami
 setting. The expe
ted amortized insertion/deletiontime for their algorithm is O(1); sear
hing takes O(1) worst
ase time. Our aim is to strengthen the above algorithm soit works with high probability, not just with
onstant prob-ability. To this end, we modify the FKS perfe
t hashings
heme to make it work with high probability, �rst in thestati
 setting, and then in the dynami
 setting.First, we present the stati
 algorithm. The key idea is to
reate several perfe
t hashing subproblems and to apply theFKS s
heme on ea
h independently to obtain high su

essprobability.
7.1 The Static Hashing SchemeThe following steps are performed. Let � be any positive
onstant. The time and spa
e taken by our data stru
turewill be linear, but with an 1�
onstant fa
tor. The failureprobability will de
rease as � gets
loser to 0.Step 1. Start with an imaginary array A of size n
, wherethe n items to be hashed
ome from the range 1 : : : n
. Ea
hitem indexes into an unique element in this array. Next,repeatedly partition this array as in Step 2.Step 2. Constru
t a partition tree as des
ribed below. Ea
hnode in this tree will have a subarray of A asso
iated withit. The depth of this tree will be a
onstant and the numberof nodes will be O(n). The root of this tree is A itself. Ithas n�
hildren, ea
h asso
iated with a distin
t subarrayof A of size n
�� obtained by partitioning A into n� disjointpie
es. Ea
h subarray with more than n� items is re
ursivelypartitioned; the remaining subarrays be
ome leaves. Ea
hleaf has at most n� items. Clearly, the number of levels inthis tree is O(
�) = O(1) and the total size in O(n). Thetotal time taken to set up the tree is easily seen to be O(n).Step 3. Next, we
onsider ea
h leaf of the above tree inturn, and the items in the subarray asso
iated with this leaf.We perfe
t-hash these items using the FKS perfe
t hashings
heme. Sin
e this s
heme su

eeds only with probability1/2, several trials may be required before these items areperfe
tly hashed. We show that with high probability, thetotal time taken in this pro
ess over all leaves is O(n).

7.2 Time ComplexityWe need to bound the time taken to perform several FKSperfe
t-hashings, where the total sizes of all subproblems isn, ea
h subproblem has size at most n�, and a subproblem isperformed su

essfully in linear time with probability 1/2.Size Categories. Divide the leaves into O(log n) quadru-pling
ategories by size (i.e., number of asso
iated items).Consider just leaves in any one size
ategory, namely, the
ategory in whi
h leaf sizes are in the range n�4i+1 � � � n�4i ,i � 0. We will show that the time taken for this
ate-gory is proportional to the sum of the sizes of leaves in this
ategory plus O(n2i), with failure probability O(logn)2�(2in1��logn) . Itfollows that the total time taken over all
ategories is O(n),with failure probability O(logn)2�(n1��logn) .A leaf is said to su

eed when the items in it are perfe
tlyhashed. A round refers to one trial for ea
h of the relevantleaves. The trials for the various leaves
an be imaginedto have pro
eeded in rounds, with leaves su

eeding in oneround dropping out of the subsequent rounds. We organizethe rounds into groups.Grouping Rounds. The 0th group
omprises rounds per-formed before the number of unsu

essful leaves in this size
ategory drops below n1��2ilog n . For j � 1, the jth group
om-prises rounds performed after the number of unsu

essfulleaves in this size
ategory drops below n1��2i2j�1 log n but beforethis number drops below n1��2i2j log n .We show that group 0 has O(i+ log log n) rounds and thatea
h group j � 1 has O(2j) rounds, with failure probabilityO(logn)2�(n1��2ilog n) (over all groups). Further, we show that withthe same failure probability, every two
onse
utive roundsin group 0 redu
e the number of unsu

essful leaves by half.The total time taken for rounds in group 0 is then propor-tional to the sum of leaf sizes in this
ategory. The timetaken for rounds in the other groups isO(�(logn)Xj=1 [2j n1��2i2j�1 log n n�4i ℄) = O(n2i);as required.The Key Property. To show the above
laims on thenumber of rounds in ea
h group, we will need the follow-ing property, obtained using the Cherno� bound. If thereare #u unsu

essful leaves at some instant of time, thenhalf these leaves su

eed in the next 2k rounds, with failureprobability 12�(#uk) .Group 0. First,
onsider group 0. If the number of un-su

essful leaves at some instant is at least n1��2ilog n , thentwo rounds will halve the number of unsu

essful leaves,with failure probability at most 12�(n1��2ilog n) (apply the aboveproperty with k = 1 and #u � n1��2ilog n). Note that the num-ber of leaves in the size
ategory being
onsidered is at mostnn�=4i+1 = n1��4i+1, to begin with. It follows that group 0has 2(i + 2 + log log n) rounds, and halving o

urs in ea
hpair of
onse
utive rounds, with failure probability at most(i+2+log log n)2�(n1��2ilogn) = O(logn)2�(n1��2ilogn) .

Other Groups. Next,
onsider group j, j � 1. Apply-ing the above property with k = 2j and #u � n1��2i2j log n , weget that group j has 2:2j rounds with failure probability12�(n1��2i2j2j logn) = 12�(n1��2ilog n) . Finally, adding up the failureprobability over all O(log n) groups gives O(logn)2�(n1��2ilog n) , as re-quired.The total time and spa
e taken above is thusO(n), with highprobability. Sear
hing for an element requires following theunique path down the partition tree to rea
h the relevantperfe
t-hash table. These operations are easily seen to takeO(1) worst-
ase time.
7.3 The Dynamic Hashing SchemeThe dynami
 version of the above stati
 s
heme maintainsthe partition tree des
ribed in Step 2 above at ea
h in-stant (with the same parameters, i.e., A has size n
 andthe bran
hing fa
tor in n�; here n is the total number ofitems whi
h will ever be inserted).Initially the partition tree will have just an empty root node.This tree will build up as insertions are made. The size ofthe partition tree at any instant will be proportional to thenumber of items in it. Further, at ea
h instant, the perfe
t-hash stru
ture at any leaf will have an asso
iated
apa
ity.This
apa
ity will be at least the number of items at thatleaf but no more than twi
e this quantity. It follows thatthe total spa
e required at any instant will be proportionalto the number of items present.The algorithm for an insertion is des
ribed next. Note thatour
ompa
ted tree appli
ation involves only insertions andno deletions.Insertions. On an insertion x, the path down this partitiontree to the appropriate leaf v is tra
ed in O(1) time. Sub-sequently, there are two
ases depending upon how manyitems are already present in this leaf v.First, suppose v has more than n� items, in
luding x. Thenthe subarray asso
iated with v is subdivided as in Step 2 ofthe stati
 algorithm and the subtree rooted at v is developed.Ea
h leaf in this tree will have at most n� elements in it. Theelements in ea
h of these leaves are then perfe
t-hashed.Next, suppose v has at most n� items, in
luding x, Then theitems already in v would have been perfe
t-hashed; further,this perfe
t-hash stru
ture will have a
ertain
apa
ity. Ifthis
apa
ity is equaled by the insertion of x, then all theitems in v (in
luding x) are rehashed into a perfe
t-hashstru
ture of twi
e the
apa
ity. Otherwise, if this
apa
ityis not equaled, then v is perfe
t-hashed. If there is no
ol-lision, then v's insertion is
omplete. Otherwise, if there isa
ollision, then all the items in v along with x are perfe
t-hashed again.Time Analysis. We will show that the total time takento perform n insertions is O(n) with failure probability atmost O(logn)2�(n1��= logn) . To show the above, the following fa
tsneed to be noted.1. The height of the partition tree is O(1), therefore, thetime spent in developing leaves into subtrees on inser-tion is just O(n) over all n insertions.2. The perfe
t-hash stru
ture at any leaf in the partitiontree begins with
apa
ity whi
h is twi
e the number

of items
urrently in the stru
ture. Future insertionsin
rease this number until it equals the
apa
ity. Untilthis happens, this perfe
t-hash stru
ture stays in pla
e,though it may have to be rebuilt as many times as
ollisions are
aused by insertions. On
e the number ofitems mat
hes the
apa
ity, this perfe
t hash-stru
tureis abandoned and a new perfe
t-hash stru
ture withtwi
e the
apa
ity is put in pla
e.3. The total
apa
ities of all perfe
t-hash stru
tures whi
hwere ever in existen
e at any time during the n inser-tions is O(n) (note that when a perfe
t-hash stru
tureat a leaf is repla
ed by a new stru
ture with twi
ethe
apa
ity, ea
h stru
ture is
ounted separately inthe above sum). This follows from the doubling of
a-pa
ities at a leaf and from the
onstant depth of thepartition tree.4. When the
apa
ity of a perfe
t-hash stru
ture at a leafis doubled, the probability that this stru
ture needsrebuilding before the number of items in it equals thenew
apa
ity is at most 1=2. Further, the time takenfor rebuilding a parti
ular perfe
t-hash stru
ture isproportional to its
apa
ity.Note the di�eren
e from the stati

ase, where a perfe
t-hash trial su

eeds on the items
urrently present withprobability 1/2. Now, this is repla
ed by the fa
tthat a perfe
t-hash trial su

eeds with probability 1/2even on future insertions as long as the
apa
ity is notequaled.Thus, to establish the total time bound above, it suÆ
es tobound the total time taken for rebuilding the perfe
t-hashstru
tures at the various leaves. This in turn boils downto the following question: what is the total time taken toperform several FKS perfe
t-hashings, where the total sizesof all subproblems is �(n), ea
h subproblem has size at mostn�, and a subproblem is performed su

essfully in linear timewith probability 1/2? The analysis is now identi
al to thestati

ase.We
on
lude with two remarks on generalizing the aboves
heme when the number of items is unknown and deletionsneed to be performed as well. Neither of these is relevant toour appli
ation of
onstru
ting suÆx trees.Unknown Number of Items. Suppose the number ofitems to be hashed is an unknown quantity m, with ea
hitem
oming from the range 1 : : : n
. Then we start withan initial estimate of 1, and double the estimate ea
h timeit is equaled by insertions. Suppose the
urrent estimate is2e, and the number of items inserted is e. We �rst hashthese items into an imaginary array A of size (2e)
. No
ollisions o

ur, with inverse polynomial (in e) failure prob-ability (using families of almost-universal hash fun
tions).Subsequently, we build the partition tree with degree (2e)�.When the number of insertions equals 2e, we double our es-timate to 4e and rebuild the entire stru
ture. If the totalnumber of insertions is m, then the total time and spa
e re-quired is O(m), with failure probability inverse polynomialin m. This failure probability
an be redu
ed to 1m�(logm)by using a family of hash fun
tions de�ned by Siegel [11℄,instead of a family of almost-universal hash fun
tions.Deletions. Deletions
an be easily handled as follows. Adeleted item is just marked as deleted, without
ausing any

other
hange to the data stru
ture. Whenever the number ofitems marked as deleted be
omes a
onstant fra
tion of thenumber of items
urrently in the data stru
ture the entirestru
ture is rebuilt on the undeleted items. The runningtime remains O(m) for m insertions and deletions, with thesame failure probability as above. The spa
e at any instantis proportional to the number of undeleted items.
8. REFERENCES[1℄ B. Baker. A theory of parameterized pattern mat
hing:Algorithms and appli
ations. Pro
eedings of the 25thACM Symposium on Theory of Computing, 1993, 71{80.[2℄ M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F.M. aufder Heide, H. Rohnert, and R.E. Tarjan. Dynami
 per-fe
t hashing: Upper and lower bounds. SIAM Journalon Computing, 23, 1994, 738{761.[3℄ M. Dietzfelbinger, F. M. auf der Heide. Dynami
 hash-ing in real time. Pro
. of the 17th International Col-loquiua on Automata, Languages and Programming,LNCS 443, Springer-Verlag, 1990, 6{19[4℄ M. Fara
h. Optimal suÆx tree
onstru
tion with largealphabets, Pro
eedings of the 38th IEEE Annual Sym-posium on Foundations of Computer S
ien
e, 1997,137{143.[5℄ M.L. Fredman, J. Komlos and E. Szemeredi. Storing asparse table with O(1) worst
ase a

ess time, Journalof the ACM, 31, 1984, 538{544.[6℄ R. Gian
arlo. A generalization of suÆx trees to squarematri
es with appli
ations, SIAM Journal of Comput-ing, 1995, 520{562.[7℄ D. Gus�eld. Algorithms on strings, trees and se-quen
es. Cambridge University Press, 1997.[8℄ R. Karp and M. Rabin. EÆ
ient Randomized PatternMat
hing, IBM Journal of Resear
h and Development,1987.[9℄ D.K. Kim and K. Park. Linear time
onstru
tion of2-D suÆx trees. Pro
eedings of the 26th InternationalColloquium on Automata, Languages, and Program-ming, 1999.[10℄ E.M. M
Creight. A spa
e e
onomi
al suÆx tree
on-stru
tion algorithm, Journal of the Asso
iation ofComputing Ma
hinery, 2, 1976, 262{272.[11℄ A. Siegel. On universal
lasses of fast high perfor-man
e hash fun
tions, their time spa
e trade-o�, andtheir appli
ations, Pro
eedings of the 30th IEEE An-nual Symposium on Foundations of Computer S
ien
e,1989, 20{25.[12℄ D. Sleator, R. Tarjan. A Data Stru
ture for Dynami
Trees, Journal of Computer and System S
ien
es, 26,1983, 362{391.[13℄ E. Ukkonen. Constru
ting suÆx trees on-line in lineartime, Pro
eedings of the IFIP 12th World ComputerCongress, 1992, 484{492.

[14℄ P. Weiner. Linear pattern mat
hing algorithms, Pro-
eedings of the 4th IEEE Annual Symposium onSwit
hing and Automata Theory, 1973, 1{11.

