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ABSTRACTWe onsider suÆx tree onstrution for situations with miss-ing suÆx links. Two examples of suh situations are suÆxtrees for parameterized strings and suÆx trees for 2D arrays.These trees also have the property that the node degreesmay be large. We add a new bak-propagation omponent toMCreight's algorithm and also give a high probability per-fet hashing sheme to ope with large degrees. We showthat these two features enable onstrution of suÆx treesfor general situations with missing suÆx links in O(n) time,with high probability. This gives the �rst randomized lineartime algorithm for onstruting suÆx trees for parameter-ized strings.
1. INTRODUCTIONThe SuÆx Tree of a given string of length n is the ompatedtrie of all its suÆxes. This tree has size O(n) and an beonstruted in O(n) time [10; 14; 13℄. SuÆx trees haveseveral appliations (see [7℄). One of the main appliationsof suÆx trees is to preproess a text in linear time so asto answer pattern ourrene queries in time proportionalto the length of the query and independent of the length ofthe preproessed text. The preproessing involves buildingthe suÆx tree for the text. Next, given a query pattern,the unique path down the suÆx tree traed by this patternis determined; eah leaf of the tree whih lies further downfrom this path orresponds to an ourrene of the pattern.Parameterized SuÆx Trees. Baker [1℄ generalized thede�nition of suÆx trees to parameterized strings, i.e., stringshaving variable haraters or parameters in addition to theusual �xed symbols. The set of parameters and the set ofsymbols are disjoint. Two parameterized strings are said tomath eah other if the parameters in one an be onsistentlyreplaed with the parameters in the other to make the two�This work was supported in part by NSF grants CCR-9503309 and CCR-9800085.

string idential. Here, onsisteny demands that all our-renes of a partiular parameter are replaed by the sameparameter and distint parameters are replaed by distintparameters. Baker [1℄ gave a de�nition of suÆx trees forparameterized text strings t so as to failitate answeringpattern ourrene queries in time independent of the textlength jtj.2D SuÆx Trees. Gianarlo [6℄ generalized suÆx trees totwo-dimensional texts t in order to answer pattern our-rene queries (i.e., �nd all ourrenes of a given squarearray p in the square text t) in time independent of jtj.SuÆx Tree Constrution. There are several algorithmsfor onstruting the suÆx tree of a string drawn from aonstant-sized alphabet set in O(n) time. These inlude thealgorithms by MCreight [10℄, Weiner [14℄ and Ukkonen [13℄.All these algorithms exploit an important property of suÆxtrees, namely, eah node has an outgoing suÆx link.Farah [4℄ showed how to onstrut suÆx trees in O(n) timeeven when the alphabet size was not onstant but some poly-nomial in n. This algorithm di�ers from the others above inthat it is not sweep-based and seems to be less ritially de-pendent on the existene of outgoing suÆx links. However,it requires renaming pairs of adjaent haraters to get astring of size half that of the original string. The suÆx treefor this smaller string is built reursively; Farah shows howthe suÆx tree of the original string an be obtained fromthe suÆx tree of this smaller string in O(n) time.In ontrast to suÆx trees for strings, suÆx trees for bothparameterized strings and 2-D arrays lak the suÆx linkproperty, i.e., there ould be nodes in the tree without anoutgoing suÆx link de�ned. In addition, the node degrees inthese suÆx trees need not be bounded by a onstant. Dueto these two problems, the best onstrutions known untilreently for suÆx trees for parameterized strings [1℄ and 2-Darrays [6℄ took O(n log n) time, where n is the size of the in-put string/array. In eah ase, the problem of missing suÆxlinks was handled by using a dynami tree data struture[12℄; this data struture is used to �nd the insertion siteof the next suÆx in O(log n) time. Further, the problem oflarge node degrees was handled by the standard approah ofmaintaining a binary searh tree, whih also gave a �(log n)overhead.Reently, Kim and Park [9℄ used the paradigm of Farah [4℄to give an O(n) time algorithm for 2-D suÆx tree onstru-tion (for polynomially bounded alphabet size). However, itis not lear how to apply this paradigm to the ase of pa-rameterized strings. In partiular, it is not lear how therenaming of pairs of adjaent haraters mentioned above



an be aomplished in suh a way that the suÆx tree ofthe given string an be obtained from the suÆx tree of therenamed string in O(n) time.Our Contribution. We present two new tools in this pa-per.(i) The �rst tool is aimed at takling the problem of miss-ing suÆx links. We augment MCreight's algorithm with anew feature whih opies nodes bakwards (imagine suÆxlinks as going forwards), thus adding additional nodes andsuÆx links to the suÆx tree. Using a non-trivial aountingproedure, we show that this bak-propagation adds onlyO(n) extra nodes and aomplishes the onstrution of thesuÆx tree in O(n) time even with missing suÆx links. Thebak-propagation is similar to frational asading, as usedin many pointer based data strutures of bounded degree(when viewed as graphs); the diÆulty here is that the de-grees are potentially unbounded, whih appears to neessi-tate a quite di�erent analysis.(ii) The time analysis in (i) assumes that given a node xand a harater a, the unique edge from x to a hild of xstarting with the harater a is omputable in O(1) time. Toenable this for high degree nodes x, we give an extension ofthe dynami version of the Fredman-Komlos-Szemeredi per-fet hashing sheme [5℄ whih supports insertions of itemsfrom a polynomial sized range in amortized onstant timeand linear spae, with high probability (as ompared to theprevious expeted time result of Dietzfelbinger et al. [2℄).Searhing for an item requires worst ase onstant time. Infat, the items being in a polynomial sized range is not nees-sary for our hashing sheme; it suÆes if they an be hashedinto a polynomial sized range in linear time.The above two tools provide a uni�ed framework from whihrandomized O(n) time algorithms for onstruting suÆxtrees for regular strings, parameterized strings and 2-D ar-rays are easily derived. These algorithms work with highprobability. This is the �rst O(n) time randomized algo-rithm for parameterized suÆx tree onstrution; the pre-vious best algorithm[1℄ took O(n log n) deterministi time.The suÆx trees we onstrut also have the property thatthe unique path in the tree orresponding to a given pat-tern string p an be found in O(p) time, regardless of thedegrees of the nodes.
2. THE GENERAL SETTINGBefore desribing our algorithm, we desribe the general set-ting for whih our algorithm works. We need the followingde�nitions.Compated Trie. A ompated trie is a tree data stru-ture de�ned on a olletion of strings. This tree has one leafper string in this olletion, and eah internal node has atleast 2 hildren. Therefore, the number of nodes is linear inthe number of strings in the given olletion. Eah edge ofthe tree is assoiated with (or labelled with) some substringof one of the strings in the given olletion. The key prop-erty is that for every pair of leaves, the string formed byonatenating the edge labels on the path from the root tothe least ommon anestor of these two leaves is the longestommon pre�x of the strings assoiated with the two leaves.In this paper, we are interested in ompated tries of ertainkinds of string olletions.

Quasi-SuÆx Colletions. An ordered olletion of stringss1; s2; : : : ; sn is alled a quasi-suÆx olletion if and only ifthe following onditions hold. Let jsj denote the length ofstring s.1. js1j = n and jsij = jsi�1j � 1. Therefore, jsnj = 1.2. No si is a pre�x of another sj .3. Suppose strings si and sj have a ommon pre�x oflength l > 0. Then si+1 and sj+1 have a ommonpre�x of length at least l� 1.We will assume that all the strings are drawn from an al-phabet of size polynomial in n.Charater Orales. Note that the total length of thestrings in a quasi-suÆx olletion of n strings is O(n2), whileour aim is to ahieve O(n) time onstrution for the om-pated trie. Therefore, we annot a�ord to read the ol-letions expliitly. Instead, we will assume an orale whihsupplies the ith harater of the jth string of the olletionon demand, in O(1) time.Multiple Quasi-SuÆx Colletions. Consider m distintquasi-suÆx olletions, eah olletion having at most nstrings. These m quasi-suÆx olletions onstitute a multi-ple quasi-suÆx olletion if onditions 2 and 3 above hold forany pair of strings si; sj over all the m olletions (in otherwords, these onditions hold for pairs within eah olletionand for pairs drawn from distint olletions as well).Our main result will be the following.Theorem 1. Let � be any positive onstant. The om-pated trie of a quasi-suÆx olletion of n strings an beonstruted in O(n) time and spae with failure probabilityat most O(logn)2�(n1��= logn) , given the above harater orale. Fur-ther, the ompated trie of a multiple quasi-suÆx olletionomprising m quasi-suÆx olletions of at most n stringseah an be onstruted in O(nm) time and spae with fail-ure probability at most O(logmn)2�((mn)1��= logmn) ,
2.1 Examples of Quasi-Suffix CollectionsThe signi�ane of the above theorem omes from the fol-lowing examples of quasi-suÆx olletions. The simplestexample is the olletion of all suÆxes of a string s witha speial end-of-string symbol. This is a quasi-suÆx olle-tion but with a stronger property, namely, ondition 3 in thede�nition of quasi-suÆx olletions is satis�ed with equal-ity. The ompated trie of these suÆxes is the well-knownsuÆx tree of the string s. Next, we give two more signi�antexamples, for whih equality need not hold in ondition 3.
2.1.1 Suffix Trees for Parameterized StringsReall from the introdution that a parameterized strings has parameters and symbols. The alphabet from whihparameters are derived is disjoint from the alphabet fromwhih symbols are derived. Further, both alphabet sizes arepolynomial in n, the length of s. As is standard, assumethat s ends in a symbol $ whih does not our elsewhereis s. From s, Baker [1℄ de�ned the following olletion ofstrings.Eah suÆx s0 of s is mapped to a string num(s0) with pa-rameters replaed by numbers and symbols retained as suh(assume that symbols are not numbers). The replaement of



parameters is done as follows. The �rst ourrene of eahparameter in s0 gets value 0 in num(s0). Subsequent our-renes of a parameter get values equal to the distane fromthe previous ourrene of the same parameter. Considerthe olletion of strings fnum(s0)js0 suÆx of sg in dereas-ing length order. Baker [1℄ de�ned the suÆx tree of param-eterized string s to be the ompated trie of this olletion.That this olletion of strings is indeed a quasi-suÆx olle-tion an be seen as follows.Condition 1 learly holds and ondition 2 follows from theourrene of the speial symbol $ at the end of s. Condition3 is shown to hold next. Note that if s0i and s0i+1 are twoonseutive suÆxes of s, then num(s0i+1) an be obtainedfrom num(s0i) as follows: for eah well-de�ned index k > 0,set num(s0i+1)[k℄ to num(s0i)[k+1℄ if num(s0i)[k+1℄ 6= k, andset num(s0i+1)[k℄ to 0, otherwise. Next, onsider two suÆxess0i and s0j of s. From the above observation, it follows that ifnum(s0i) and num(s0j) have a ommon pre�x of length k+1,then num(s0i+1) and num(s0j+1) have a ommon pre�x oflength k. Further, if num(s0i) and num(s0j) di�er at loationk+1, then num(s0i+1) and num(s0j+1) ould be idential atloation k if one of num(s0i)[k + 1℄; num(s0j)[k + 1℄ equals kand the other equals 0. Condition 3 is now easily seen tohold.The harater orale for the above quasi-suÆx olletion iseasily implemented in O(1) time, after the following preom-putation: for eah ourrene of a parameter in s, determinethe previous ourrene, if any, of this parameter in s. Thispreomputation is easily done in O(n) time.
2.1.2 Suffix Trees for 2-D ArraysConsider a 2-D array s having size m�n, m � n, and har-aters drawn from some polynomial range. For eah squaresubarray s0 of s whih is maximal (i.e., touhes either theright boundary or the bottom boundary or both boundariesof s), Gianarlo [6℄ de�ned a string num(s0) as follows.De�ning num(s0). Partition s0 into L's as in [6℄ (an L isformed by taking a pre�x of a row and a pre�x of a ol-umn, with the ommon point being at the bottom-right;both pre�xes have equal lengths; the resulting shape is a-tually the mirror image of the harater L). num(s0) will bea sequene of numbers, one number for eah suh L; thesenumbers are arranged in inreasing order of L sizes. Thenumber for a partiular L is obtained by reading this L asa string and then mapping strings to integers in suh a waythat distint strings map to distint integers (by using, forexample, the Karp-Rabin �ngerprinting sheme [8℄, whihensures this property with inverse polynomial failure prob-ability). Finally, append a speial end-of-string symbol $ tonum(s0), as was done for parametrized strings.The Quasi-SuÆx Colletions. Consider a partiular top-left to bottom-right diagonal and onsider all maximal squaresubarrays of s with top-left point on this diagonal. Thenum() strings orresponding to these subarrays are eas-ily seen to form a quasi-suÆx olletion. Thus eah top-left to bottom-right diagonal gives a quasi-suÆx olletionof strings. Sine there are m + n � 1 diagonals, we havem + n � 1 = O(m) distint quasi-suÆx olletions in all.It is easy to hek that these m+ n � 1 quasi-suÆx olle-tions together onstitute a multiple quasi-suÆx olletion(we will use distint end-of-string symbols for eah diagonalto satisfy ondition 2 for pairs of strings drawn from dis-tint olletions). Note that the number of strings in eah

olletion is at most n. Gianarlo [6℄ de�ned the ommonompated trie of these m+n�1 olletions to be the suÆxtree of s.The Charater Orale. A harater orale whih workswith inverse polynomial failure probability in O(1) time af-ter O(mn) preproessing is easy to implement using theKarp-Rabin �ngerprinting sheme. The preproessing in-volves omputing pre�x sums for eah row and olumn.
2.2 Proving Theorem 1The rest of the paper is devoted to proving Theorem 1. First,we will desribe how to onstrut the ompated trie of asingle quasi-suÆx olletion of n strings in O(n) time withhigh probability. This algorithm an be extended to multiplequasi-suÆx olletions (like those resulting from 2D arrays)easily with an O(m) multipliative time and spae overhead(assuming m olletions of at most n strings eah). Thisextension is skethed briey in Setion 6.Our algorithm for a single quasi-suÆx olletion will havetwo omponents. The �rst omponent is a modi�ation ofMCreight's algorithm and is desribed in Setion 4 andSetion 5. In these setions, we will assume that the uniquehild of any given node with edge label beginning with agiven harater an be determined in O(1) time. The seondomponent, i.e., a dynami perfet hashing sheme desribedbelow, will handle this problem.Note that in all the above examples of quasi-suÆx olle-tions, the alphabet size is a polynomial in n. Thus to aessthe unique edge with a partiular starting harater from anode, we need to perfetly hash O(n) pairs, where the �rstentry in the pair is a node number and the seond entryis a harater from the alphabet. Eah suh pair an betreated as a number from a range polynomial in n. We givea dynami hashing sheme whih will perfetly hash an itemfrom a polynomial in n range in Setion 7.Before giving our algorithms, we need an outline of M-Creight's algorithm for onstruting the suÆx tree of a string.
3. MCCREIGHT’S ALGORITHMThe use of suÆx links is ruial to this algorithm. SuÆxlinks are de�ned as follows.De�nition. For a node x, let str(x) denote the substringassoiated with the path from the root of the tree to x. AsuÆx link points from a node x to a node y suh that str(y)is just str(x) with the �rst harater removed. Let link(x)denote this node y. Let par(x) denote the parent of x. For astring u, de�ne node(u) to be that node x, if any, for whihstr(x) = u.Sine ondition 3 in the de�nition of quasi-suÆx olletionsis satis�ed with equality for the olletion of suÆxes of astring, suÆx links are de�ned for eah node x in the suÆxtree, i.e., for eah node x, a node y = link(x) with the abovedesription exists.MCreight's onstrution inserts suÆxes into the suÆx treeone by one, in order of dereasing length. For eah suf-�x, one new leaf and possibly one new internal node areinserted. This sequene of insertions an be divided intophases. There are two kinds of phases, sanning and resan-ning.A sanning phase begins with a hitherto unread portion ofthe input string being sanned and a portion of some path



down the suÆx tree being traversed, ulminating in the in-sertion of a new leaf as a hild of a new or existing internalnode x1. Portions of the suÆx tree traversed in this sanningstep are alled sanned portions. Subsequent to this san-ning, a resanning phase begins in whih a series of internalnodes x2; : : : ; xk is inserted1, without the text being sannedany further. xi's suÆx link points to xi+1, 1 � i � k � 1;further, xk's suÆx link points to an already present nodexk+1. The next sanning phase begins by sanning the treedownwards from xk+1.The proess of inserting xi+1, following the insertion of xi,1 � i � k � 1, is as follows. The tree is resanned down-wards from link(par(xi)) until the right position for xi+1is found. Resanning requires determining that path downthe tree from link(par(xi)) whose edge labels form the samesubstring as the label on the edge between par(xi) and xi.Suh a path is guaranteed to exist by ondition 3 in thede�nition of quasi-suÆx olletions; further equality in thisondition implies that the termination point of this path isthe right loation for xi+1. Sine the above path is guaran-teed to exist, it suÆes to examine just the �rst harater oneah edge to determine this path, as opposed to examiningall the haraters omprising the edge label; thus the termresanning as opposed to sanning.
4. OUR ALGORITHMAs in MCreight's algorithm, we will insert the strings inthe given olletion s1; : : : ; sn in the ompated trie in de-reasing order of length. Muh of the algorithm remains thesame; however, we make two key modi�ations. The �rst in-volves traversing the path up the tree from a newly insertednode to �nd an anestor with a suÆx link. The seond in-volves opying nodes bakwards while resanning down thetree from the destination of the above suÆx link. Thesehanges a�et only the resanning algorithm; the sanningpart remains unhanged. We desribe these hanges in de-tail next.De�ning SuÆx Links. For a node x, link(x) is now de-�ned to be that node y suh that if str(x) is a pre�x ofsome si then str(y) is a pre�x of si+1; further jstr(y)j =jstr(x)j � 1. Note that sine ondition 3 in the de�nition ofquasi-suÆx olletions need not be satis�ed with equality,link(x) need not be de�ned for every node x. Also notethat if link(x) exists then it is unique; this follows beauseif str(x) is a pre�x of si and of sj then si+1 and sj+1 agreein the �rst jstr(x)j � 1 haraters.Baking Up. Reall the proess of inserting xi+1, followingthe insertion of xi, 1 � i � k � 1, from our desriptionof MCreight's algorithm above. Now, sine link(par(xi))need not be de�ned, we must traverse up the tree from xiuntil a node with a suÆx link de�ned is found. We all thisnode nan(xi) (nan stands for nearest anestor). Next, thetree is resanned downwards from link(nan(xi)), as before.See Figure 1.Real and Imaginary Nodes. Reall from our desriptionof MCreight's algorithm above that a resanning phase ter-minates when it is found that the suÆx link of xk points to1With eah of these internal nodes, a hild leaf orrespond-ing to a new suÆx is also inserted.
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an already existing node xk+1. In our situation, the ter-mination ondition of a resanning phase is di�erent. Aresanning phase ends when it is found that either:1. xk's suÆx link points to an already existing node xk+1,or,2. xk's suÆx link is not de�ned, i.e., it points to the mid-dle of an edge.We introdue an imaginary node xk+1 in the latter ase;note that this imaginary node has only one hild and doesnot have an outgoing suÆx link. Internal nodes whih arenot imaginary will be alled real; so x1 : : : xk are real andhave at least 2 hildren eah. The urrent resanning phaseends at xk+1 and a new sanning phase begins by sanningdownwards from xk+1.Note that there are just O(n) real nodes and O(n) imaginarynodes (at most one real internal node, one leaf, and oneimaginary node are inserted per suÆx). Sine real nodeshave at least two hildren eah, imaginary nodes have justone hild eah, and the number of leaves is n, the totalnumber of hildren over all real and imaginary nodes is O(n).Also note that the total length of the sanned portions ofthe tree in MCreight's algorithm in O(n) and this remainsthe same for our algorithm. We state these fats below forfuture referene.Fat 1. (i) The number of real and imaginary nodestogether is O(n).(ii) The total number of hildren of real and imaginarynodes together is O(n).(iii) The total length of the sanned portions of the treeis O(n) (the length of a single sanned portion is thenumber of haraters, not nodes, enountered in thepath sanned).Bak-Propagated Nodes. Other than real and imaginarynodes, our onstrution will involve internal nodes of a thirdkind, alled bak-propagated nodes. Bak-propagated nodeswill always have suÆx links and only one hild eah. Theyare de�ned as follows. In the following, think of suÆx linksas pointing forwards (see Figure 1).Suppose our algorithm has just inserted a node x. Whenthe appropriate path starting an link(nan(x)) is resannedin order to determine the node link(x), several nodes ouldbe enountered in the proess. If more than 2 nodes are en-ountered, then alternate nodes are propagated bak to thepath (nan(x); x) (i.e., new nodes with suÆx links pointingto the traversed nodes are set up on this path), taking arethat the �rst and the last nodes traversed are not propagatedbak. The new nodes are alled bak-propagated nodes.Diretion of Bak-Propagation. Note that a node ouldbe bak-propagated in several di�erent diretions, i.e., sev-eral bak-propagated nodes ould have their suÆx links point-ing to this node. Further, a bak-propagated node ouldbe propagated bakwards further, forming a hain of bak-propagated nodes.De�nitions. For a node x, let prev(x) be a set of stringsde�ned as follows. For eah si in the given quasi-suÆx ol-letion having pre�x str(x), prev(x) ontains the pre�x of

si�1 of length jstr(x)j + 1. Note that prev(x) is a set andnot a multiset; therefore all strings in it are distint. Dire-tion a is said to be valid for node x if string a appears inprev(x). Node x is said to be bak-propagated in diretion aif there exists a string a in prev(x) suh that node(a) existsand is a bak-propagated node (see Figure 2). Note thatthe suÆx link of node(a) points to x under these onditions,i.e., link(node(a)) = x.The following invariant is maintained by our algorithm byvirtue of the fat that only alternate nodes enountered arebak-propagated and the �rst and last nodes enounteredare not bak-propagated.Invariant 1. If a node x is bak-propagated in diretiona then its parent is not bak-propagated in diretion a0, wherea0 is a pre�x of a.
5. TIME COMPLEXITYThere are two aspets to the time taken. The �rst involvesbaking-up from x to nan(x), subsequent to the insertionof x. The seond involves resanning the appropriate pathdown from link(nan(x)) until link(x) is loated. We a-ount for these two aspets of the time separately.We make a few remarks on the seond aspet here. Eahstep taken here involves one of the following:1. Creating a new bak-propagated node.2. Adding a suÆx link to an already existing node. Thishappens when one seeks to bak-propagate a node butthe site of this bak-propagation is already oupiedby some other node. For this to happen, the latternode must not have a suÆx link, i.e., it must be animaginary node. A suÆx link is now added to thisimaginary node.3. Creating a new real or imaginary node. This is thenode link(x).Sine only one real or imaginary node is added when resan-ning from link(nan(x)) to link(x), the time taken in thisresanning is proportional to O(1) plus the number of nodesbak-propagated in this proess plus the number of imagi-nary nodes for whih suÆx links are set up in this proess.Sine eah imaginary node an get only one suÆx link dur-ing the ourse of the entire algorithm, bounding the abovetime boils down to bounding the number of bak-propagatednodes by O(n).
5.1 Bounding Back-Propagated NodesThis will use a harging argument, where eah bak-propagatednode will be harged to either some real/imaginary node, orto some harater in the string s1. Eah real/imaginarynode and eah harater in s1 will be harged O(1) in theproess. The O(n) bound will follow from Fat 1. It maybe that a node reated by bak propagation subsequentlybeomes real or imaginary. These nodes are not ounted;only nodes that are not real or imaginary when the full treeis built are ounted.Note that a bak-propagation hain always starts at a realor an imaginary node. We will de�ne a tree for eah real orimaginary node x as follows.De�ning BP�tree(x). All nodes in this tree other than theroot x are bak-propagated nodes. Those bak-propagated



nodes whih are bak-propagated from x (i.e., have suÆxlinks pointing to x) are hildren of x in this tree. Treesrooted at these hildren are de�ned reursively, i.e., hildrenof a node are those whih are bak-propagated from thatnode. The leaves of this tree are those nodes whih are notbak-propagated at all.Consider the forest of BP � Trees(�) rooted at the variousreal/imaginary nodes that are bak-propagated. Eah bak-propagated node appears in exatly one tree in this forest.Deomposing BP �tree(x) into paths. We partition thenodes of this tree into paths. The �rst path is the minimalpath starting from the root x and ending on a node y withthe following property: either there exists a valid diretion asuh that y has not been bak-propagated in this diretionor there is no valid diretion for y. Clearly, suh a nodey must exist. But for the termination restrition, the pathstarting at the root is hosen arbitrarily. One nodes in thispath are removed, the subtrees hanging o� this path aredeomposed reursively.Clearly, eah bak-propagated node will belong to exatlyone of the various paths formed above. Think of eah pathas going bakwards from its start node.Aounting for long paths. We show that the sum ofthe lengths of all the paths obtained above is proportionalto the number of suh paths plus O(n).Consider any path obtained above. Let x be any node onthis path, other than its start node. link(x) is the node fromwhih x was bak-propagated, in diretion, say a. Note thatlink(x) will preede x in the path being onsidered.By Invariant 1, the parent par(link(x)) of link(x) in theompated trie has not been bak-propagated in the dire-tion a0, where a0 is the pre�x of a suh that ja0j equalsjstr(par(link(x)))j+ 1; a0, of ourse, is a valid diretion forpar(link(x)) (beause a is valid for link(x) itself). It fol-lows that either par(link(x)) is a real/imaginary node orpar(link(x)) is a bak-propagated node and the last node inits path. In either ase, we harge par(link(x)) for x.Clearly, eah real/imaginary node and eah bak-propagatednode whih is the last node in its respetive path will beharged an amount equal to the number of its hildren, inthis proess. From Fat 1(ii), this harge sums to O(n)for real/imaginary nodes. Note that bak-propagated nodeshave only one hild eah. Thus, it now suÆes to bound thetotal number of paths.Bounding the total number of paths. We will extendthe above paths bakwards to form a olletion of extendedpaths, as below.Consider any one path, and let x be the last node on thispath. The extension to this path is performed as follows.Start at x and follow that diretion bakwards along whihx was not bak-propagated (there is at least one suh dire-tion, unless there are no valid diretions for x). Next, repeat-edly follow any arbitrarily hosen valid diretion bakwards.This extension need not always enounter a node (in fat wewill stop when we hit a node); it is allowed to ut throughedges 2. So if a partiular step of this extension leads to the2We have de�ned valid diretions only for nodes in the om-pated trie. However, this de�nition an be extended forpoints in the middle of an edge in the obvious way, i.e., byimagining as if a node is present at that point.

middle of an edge e, take an arbitrary valid diretion bakfrom that harater on e. Continue this extension until ei-ther a node is reahed or there is no valid diretion left togo further.Thus an extended path onsists of an initial pre�x of nodes(i.e., the path itself), followed by a walk whih uts throughedges, and possibly terminates on a node. Again, note thatwe think of a path as going bakwards. We have the follow-ing laims.Lemma 1. Two distint extended paths annot interset(i.e., they annot ut through the same point on some edgeor have a node in ommon), exept that the last node of onean be the �rst node of the other.Proof. Sine forward diretions are always unique, two ex-tended paths an interset otherwise only if the start nodeof one path is ontained in the other path and is not thelast node on that path. This is a ontradition sine all theunextended paths begin at nodes, the unextended paths arenode disjoint, and the extension of a path terminates as soonas a node is reahed. 2Lemma 2. If an extended path terminates by reahing anode y (and not by running out of valid diretions), then yannot be a bak-propagated node.Proof. Let x be the last node of the path whose exten-sion is under onsideration. Suppose y is a bak-propagatednode. Then learly, x must have been bak-propagated inthe diretion implied by y (note that there is a unique validdiretion for x along whih it must be bak-propagated, aunique valid diretion along whih the resulting node mustbe bak-propagated, and so on, until y is reahed). But westarted the extension of this path by hoosing a diretionalong whih x was not bak-propagated, a ontradition. 2Lemma 3. The total number of paths is O(n), and henethe total number of bak-propagated nodes is O(n).Proof. Consider a partiular extended path. If it ends at anode without running out of valid diretions, this node mustbe real/imaginary, by Lemma 2; the urrent path is thenharged to this node. By Lemma 1, eah real/imaginarynode is just harged one.On the other hand, if this extended path ends beause allfurther valid diretions bakwards are exhausted, then thesubstring assoiated with the termination point is a pre�xof s1. Further, by Lemma 1, di�erent extended paths whihend in this way are assoiated with distint pre�xes of s1.Thus the number of paths is O(n).The lemma follows from the argument given earlier thatthe number of bak-propagated nodes is proportional to thenumber of paths plus O(n). 2
5.2 Backing-up TimeIt remains to aount for the time taken to determine nan(x)after the insertion of x. Note that all suh nodes x for whihnan(x) will be determined are distint real nodes (beauseeah imaginary node starts a new sanning phase).This omputation requires traversing upwards from x un-til the nearest node with a suÆx link is found. All nodesenountered on the way must be imaginary (real and bak-propagated nodes have suÆx links) and we need to aountfor the time taken to traverse these nodes.



The key laim is the following. Note that an imaginarynode y signals the beginning of a new sanning phase inMCreight's algorithm, in whih the tree is sanned down-wards starting at y, until a new leaf is inserted as a hild ofa new or existing internal node z.Lemma 4. The total number of times imaginary node yan be enountered while determining nan(�) over the en-tire algorithm is at most jstr(z)j � jstr(y)j.Proof. Note that z is a real node after the above sanningphase starting at y �nishes. y ould be enountered onewhile setting up link(z). Subsequently, sine link(z) is inplae, y will be enountered only when �nding nan(z0),where z0 is real and on the path from y to z. There an beat most jstr(z)j � jstr(y)j suh distint real nodes z0. 2.Corollary 1. The total time taken in traversing imagi-nary nodes while determining nan(�) is O(n).Proof. Follows from Fat 1 and Lemma 4. 2Theorem 1 now follows for quasi-suÆx olletions, assumingthat the orret hild of a partiular node an be foundin O(1) time. The extension to quasi-suÆx olletions isskethed next.
6. ALGORITHM FOR MULTIPLE QUASI-

SUFFIX COLLECTIONSWe sketh how to extend the above algorithm to a multiplequasi-suÆx olletion omprising m quasi-suÆx olletionsof O(n) strings eah. The time taken will be O(mn).SuÆx links and bak-propagation diretions need to be rede-�ned appropriately as follows. Let ski denote the ith string inthe kth quasi-suÆx olletion under onsideration (assumean arbitrary ordering on the m quasi-suÆx olletions).SuÆx Links. For a node x, link(x) is now de�ned to bethat node y suh that if str(x) is a pre�x of some ski thenstr(y) is a pre�x of ski+1; further jstr(y)j = jstr(x)j � 1.Note that sine ondition 3 in the de�nition of quasi-suÆxolletions need not be satis�ed with equality, link(x) neednot be de�ned for every node x. Also note that if link(x)exists then it is unique; this follows beause if str(x) is apre�x of ski and of sk0j then ski+1 and sk0j+1 agree in the �rstjstr(x)j � 1 haraters.Bak-Propagation Diretions. For a node x, let prev(x)be a set of strings de�ned as follows. For eah ski havingpre�x str(x), prev(x) ontains the pre�x of ski�1 of lengthjstr(x)j+ 1. Note that prev(x) is a set and not a multiset;therefore all strings in it are distint. Diretion a is said tobe valid for node x if string a appears in prev(x).The Algorithm. The algorithm inserts eah olletion inturn into the urrent ompated trie. The �rst string of eahquasi-suÆx olletion starts a new resanning phase begin-ning at the root of the ompated trie. The subsequentstrings in the olletion are inserted as in the previous al-gorithm. Note that the size of the ompated trie will nowbe �(mn). Fat 1 ontinues to hold with O(n) replaed byO(mn). The analysis is as before with the following twohanges. All O(n) terms are replaed by O(mn). Further,in Lemma 3, if an extended path ends beause all furthervalid diretions bakwards are exhausted then the substring

assoiated with the termination point is a pre�x of the �rststring in one of the m quasi-suÆx olletions being onsid-ered.
7. THE HASHING SCHEMEReall from Setion 2.2 that we need to perfetly hash O(n)pairs, where the �rst entry in eah pair is a node number andthe seond entry is a harater from the alphabet. Eah suhpair an be treated as a number from a range polynomial inn. We give a dynami hashing sheme whih will perfetlyhash an item from a polynomial in n range in O(n) time,with high probability. The time taken to aess a partiularitem will be O(1) and the total spae is O(n).Fredman-Komlos-Szemeredi [5℄ showed how n items fromthe range [0 : : : poly(n)℄ an be hashed into the range [0 : : : s℄without any ollisions, where s = �(n). Their algorithmtakes O(n) time and spae and works by hoosing randomlyfrom a family of almost-universal hash funtions (assumingonstant time arithmeti on O(log n) bits). It ensures noollisions with probability at least 1=2.This was generalized by Dietzfelbinger et al. [2℄ to the dy-nami setting. The expeted amortized insertion/deletiontime for their algorithm is O(1); searhing takes O(1) worstase time. Our aim is to strengthen the above algorithm soit works with high probability, not just with onstant prob-ability. To this end, we modify the FKS perfet hashingsheme to make it work with high probability, �rst in thestati setting, and then in the dynami setting.First, we present the stati algorithm. The key idea is toreate several perfet hashing subproblems and to apply theFKS sheme on eah independently to obtain high suessprobability.
7.1 The Static Hashing SchemeThe following steps are performed. Let � be any positiveonstant. The time and spae taken by our data struturewill be linear, but with an 1� onstant fator. The failureprobability will derease as � gets loser to 0.Step 1. Start with an imaginary array A of size n, wherethe n items to be hashed ome from the range 1 : : : n. Eahitem indexes into an unique element in this array. Next,repeatedly partition this array as in Step 2.Step 2. Construt a partition tree as desribed below. Eahnode in this tree will have a subarray of A assoiated withit. The depth of this tree will be a onstant and the numberof nodes will be O(n). The root of this tree is A itself. Ithas n� hildren, eah assoiated with a distint subarrayof A of size n�� obtained by partitioning A into n� disjointpiees. Eah subarray with more than n� items is reursivelypartitioned; the remaining subarrays beome leaves. Eahleaf has at most n� items. Clearly, the number of levels inthis tree is O( � ) = O(1) and the total size in O(n). Thetotal time taken to set up the tree is easily seen to be O(n).Step 3. Next, we onsider eah leaf of the above tree inturn, and the items in the subarray assoiated with this leaf.We perfet-hash these items using the FKS perfet hashingsheme. Sine this sheme sueeds only with probability1/2, several trials may be required before these items areperfetly hashed. We show that with high probability, thetotal time taken in this proess over all leaves is O(n).



7.2 Time ComplexityWe need to bound the time taken to perform several FKSperfet-hashings, where the total sizes of all subproblems isn, eah subproblem has size at most n�, and a subproblem isperformed suessfully in linear time with probability 1/2.Size Categories. Divide the leaves into O(log n) quadru-pling ategories by size (i.e., number of assoiated items).Consider just leaves in any one size ategory, namely, theategory in whih leaf sizes are in the range n�4i+1 � � � n�4i ,i � 0. We will show that the time taken for this ate-gory is proportional to the sum of the sizes of leaves in thisategory plus O( n2i ), with failure probability O(logn)2�( 2in1��logn ) . Itfollows that the total time taken over all ategories is O(n),with failure probability O(logn)2�(n1��logn ) .A leaf is said to sueed when the items in it are perfetlyhashed. A round refers to one trial for eah of the relevantleaves. The trials for the various leaves an be imaginedto have proeeded in rounds, with leaves sueeding in oneround dropping out of the subsequent rounds. We organizethe rounds into groups.Grouping Rounds. The 0th group omprises rounds per-formed before the number of unsuessful leaves in this sizeategory drops below n1��2ilog n . For j � 1, the jth group om-prises rounds performed after the number of unsuessfulleaves in this size ategory drops below n1��2i2j�1 log n but beforethis number drops below n1��2i2j log n .We show that group 0 has O(i+ log log n) rounds and thateah group j � 1 has O(2j) rounds, with failure probabilityO(logn)2�(n1��2ilog n ) (over all groups). Further, we show that withthe same failure probability, every two onseutive roundsin group 0 redue the number of unsuessful leaves by half.The total time taken for rounds in group 0 is then propor-tional to the sum of leaf sizes in this ategory. The timetaken for rounds in the other groups isO(�(logn)Xj=1 [2j n1��2i2j�1 log n n�4i ℄) = O( n2i );as required.The Key Property. To show the above laims on thenumber of rounds in eah group, we will need the follow-ing property, obtained using the Cherno� bound. If thereare #u unsuessful leaves at some instant of time, thenhalf these leaves sueed in the next 2k rounds, with failureprobability 12�(#uk) .Group 0. First, onsider group 0. If the number of un-suessful leaves at some instant is at least n1��2ilog n , thentwo rounds will halve the number of unsuessful leaves,with failure probability at most 12�(n1��2ilog n ) (apply the aboveproperty with k = 1 and #u � n1��2ilog n ). Note that the num-ber of leaves in the size ategory being onsidered is at mostnn�=4i+1 = n1��4i+1, to begin with. It follows that group 0has 2(i + 2 + log log n) rounds, and halving ours in eahpair of onseutive rounds, with failure probability at most(i+2+log log n)2�(n1��2ilogn ) = O(logn)2�(n1��2ilogn ) .

Other Groups. Next, onsider group j, j � 1. Apply-ing the above property with k = 2j and #u � n1��2i2j log n , weget that group j has 2:2j rounds with failure probability12�(n1��2i2j2j logn ) = 12�(n1��2ilog n ) . Finally, adding up the failureprobability over all O(log n) groups gives O(logn)2�(n1��2ilog n ) , as re-quired.The total time and spae taken above is thusO(n), with highprobability. Searhing for an element requires following theunique path down the partition tree to reah the relevantperfet-hash table. These operations are easily seen to takeO(1) worst-ase time.
7.3 The Dynamic Hashing SchemeThe dynami version of the above stati sheme maintainsthe partition tree desribed in Step 2 above at eah in-stant (with the same parameters, i.e., A has size n andthe branhing fator in n�; here n is the total number ofitems whih will ever be inserted).Initially the partition tree will have just an empty root node.This tree will build up as insertions are made. The size ofthe partition tree at any instant will be proportional to thenumber of items in it. Further, at eah instant, the perfet-hash struture at any leaf will have an assoiated apaity.This apaity will be at least the number of items at thatleaf but no more than twie this quantity. It follows thatthe total spae required at any instant will be proportionalto the number of items present.The algorithm for an insertion is desribed next. Note thatour ompated tree appliation involves only insertions andno deletions.Insertions. On an insertion x, the path down this partitiontree to the appropriate leaf v is traed in O(1) time. Sub-sequently, there are two ases depending upon how manyitems are already present in this leaf v.First, suppose v has more than n� items, inluding x. Thenthe subarray assoiated with v is subdivided as in Step 2 ofthe stati algorithm and the subtree rooted at v is developed.Eah leaf in this tree will have at most n� elements in it. Theelements in eah of these leaves are then perfet-hashed.Next, suppose v has at most n� items, inluding x, Then theitems already in v would have been perfet-hashed; further,this perfet-hash struture will have a ertain apaity. Ifthis apaity is equaled by the insertion of x, then all theitems in v (inluding x) are rehashed into a perfet-hashstruture of twie the apaity. Otherwise, if this apaityis not equaled, then v is perfet-hashed. If there is no ol-lision, then v's insertion is omplete. Otherwise, if there isa ollision, then all the items in v along with x are perfet-hashed again.Time Analysis. We will show that the total time takento perform n insertions is O(n) with failure probability atmost O(logn)2�(n1��= logn) . To show the above, the following fatsneed to be noted.1. The height of the partition tree is O(1), therefore, thetime spent in developing leaves into subtrees on inser-tion is just O(n) over all n insertions.2. The perfet-hash struture at any leaf in the partitiontree begins with apaity whih is twie the number



of items urrently in the struture. Future insertionsinrease this number until it equals the apaity. Untilthis happens, this perfet-hash struture stays in plae,though it may have to be rebuilt as many times asollisions are aused by insertions. One the number ofitems mathes the apaity, this perfet hash-strutureis abandoned and a new perfet-hash struture withtwie the apaity is put in plae.3. The total apaities of all perfet-hash strutures whihwere ever in existene at any time during the n inser-tions is O(n) (note that when a perfet-hash strutureat a leaf is replaed by a new struture with twiethe apaity, eah struture is ounted separately inthe above sum). This follows from the doubling of a-paities at a leaf and from the onstant depth of thepartition tree.4. When the apaity of a perfet-hash struture at a leafis doubled, the probability that this struture needsrebuilding before the number of items in it equals thenew apaity is at most 1=2. Further, the time takenfor rebuilding a partiular perfet-hash struture isproportional to its apaity.Note the di�erene from the stati ase, where a perfet-hash trial sueeds on the items urrently present withprobability 1/2. Now, this is replaed by the fatthat a perfet-hash trial sueeds with probability 1/2even on future insertions as long as the apaity is notequaled.Thus, to establish the total time bound above, it suÆes tobound the total time taken for rebuilding the perfet-hashstrutures at the various leaves. This in turn boils downto the following question: what is the total time taken toperform several FKS perfet-hashings, where the total sizesof all subproblems is �(n), eah subproblem has size at mostn�, and a subproblem is performed suessfully in linear timewith probability 1/2? The analysis is now idential to thestati ase.We onlude with two remarks on generalizing the abovesheme when the number of items is unknown and deletionsneed to be performed as well. Neither of these is relevant toour appliation of onstruting suÆx trees.Unknown Number of Items. Suppose the number ofitems to be hashed is an unknown quantity m, with eahitem oming from the range 1 : : : n. Then we start withan initial estimate of 1, and double the estimate eah timeit is equaled by insertions. Suppose the urrent estimate is2e, and the number of items inserted is e. We �rst hashthese items into an imaginary array A of size (2e). Noollisions our, with inverse polynomial (in e) failure prob-ability (using families of almost-universal hash funtions).Subsequently, we build the partition tree with degree (2e)�.When the number of insertions equals 2e, we double our es-timate to 4e and rebuild the entire struture. If the totalnumber of insertions is m, then the total time and spae re-quired is O(m), with failure probability inverse polynomialin m. This failure probability an be redued to 1m�(logm)by using a family of hash funtions de�ned by Siegel [11℄,instead of a family of almost-universal hash funtions.Deletions. Deletions an be easily handled as follows. Adeleted item is just marked as deleted, without ausing any

other hange to the data struture. Whenever the number ofitems marked as deleted beomes a onstant fration of thenumber of items urrently in the data struture the entirestruture is rebuilt on the undeleted items. The runningtime remains O(m) for m insertions and deletions, with thesame failure probability as above. The spae at any instantis proportional to the number of undeleted items.
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