
Tree Pattern Mat
hing to Subset Mat
hing in Linear Time�Ri
hard Coley Ramesh HariharanzAbstra
tThis paper is the �rst of two papers des
ribing an O (npolylog(m)) time algorithm for theTree Pattern Mat
hing problem on a pattern of size m and a text of size n. In this paper, weshow an O(n+m) time Turing redu
tion from the Tree Pattern Mat
hing problem to anotherproblem 
alled the Subset Mat
hing problem. The se
ond paper will give eÆ
ient determinis-ti
 and randomized algorithms for the Subset Mat
hing problem. Together, these two paperswill imply an O �n log3m+m� time deterministi
 algorithm and an O �n log3mlog logm +m� timerandomized algorithm for the Tree Pattern Mat
hing problem.1 Introdu
tionIn the Tree Pattern Mat
hing problem, the text and the pattern are ordered, binary trees and allo

urren
es of the pattern in the text are sought. Here, the pattern o

urs at a parti
ular textposition if pla
ing the pattern with root at that text position leads to a situation in whi
h ea
hpattern node overlaps some text node. This problem is an important problem and has manyappli
ations (see [7℄). A
tually, in these appli
ations, the tree need not be binary and the edgesmay be labelled; however, as shown in [5℄, this general problem 
an be 
onverted to a problemon binary trees with unlabelled edges but with a blow-up in size proportional to the logarithmof the size of the pattern. In fa
t, this blow-up 
an also be avoided in our approa
h, as we willindi
ate in our des
ription.The naive algorithm for Tree Pattern Mat
hing takes time O(nm), where n is the text sizeand m is the pattern size. Ho�man and O'Donell [7℄ gave another algorithm with the sameworst 
ase bound. This algorithm de
omposes the pattern into strings, ea
h string representinga root-to-leaf path. It then �nds all o

urren
es of ea
h of these strings in the text tree. The�rst o(nm) algorithm was obtained by Kosaraju [9℄ who �rst noti
ed the 
onne
tion of the TreePattern Mat
hing problem to the problem of String Mat
hing with Don't-Cares and the problemof 
onvolving two strings. Kosaraju's algorithm takes O(nm:75 logm) time. Dubiner, Galil andMagen [5℄ improved Kosaraju's algorithm by dis
overing and exploiting periodi
ities in pathsin the pattern. They obtained a bound of O(nm:5 logm). This was the best bound known todate. Dubiner, Galil and Magen also made the observation that the naive algorithm a
tuallytakes O(nh) time, where h is the height of the pattern.In this paper, we show how to redu
e the Tree Pattern Mat
hing problem to the SubsetMat
hing problem in linear time. The Subset Mat
hing problem is to �nd all o

urren
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ien
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pattern string p of length m in a text string t of length n, where ea
h pattern and text lo
ationis a set of 
hara
ters drawn from some alphabet. The pattern is said to o

ur at text position iif the set p[j℄ is a subset of the set t[i+ j� 1℄, for all j, 1 � j � m. It is required to �nd all textlo
ations at whi
h the pattern mat
hes, i.e., ea
h pattern set is a subset of the aligned text set(see Fig.1).The redu
tion from Tree Pattern Mat
hing to Subset Mat
hing pro
eeds in two steps.� We show that the general Tree Pattern Mat
hing problem 
an be redu
ed to the followingspe
ial 
ase, 
alled Spine Pattern Mat
hing, by a linear time Turing redu
tion. In Spine PatternMat
hing, there is a spe
ial path in ea
h of the pattern and text 
alled their spines. The spinebegins at the root of its tree, and in addition ea
h node on the spine has at most one non-spine
hild. Spines have additional properties as well, whi
h will be des
ribed later. All mat
hes ofthe pattern in the text are sought with the additional restri
tion that the spine of the patternmust mat
h a portion of the spine of the text, i.e., nodes on the pattern spine must be alignedwith nodes on the text spine. For intuition, one 
an think of the spine as being the path ofleft 
hildren starting at the root (and in fa
t one 
an redu
e the general problem to this 
ase inlinear time, although we will not do so).The above redu
tion may 
reate several instan
es of the Spine Pattern Mat
hing problem, butthe sum of the sizes of these instan
es will be linear. This redu
tion is 
ompletely deterministi
.It pro
eeds by using the periodi
ity stru
ture of paths and by de
omposing the text tree intoperiodi
 paths in a non-trivial manner. Ea
h path then gives a spine for the Spine PatternMat
hing problem.� Next, we redu
e the Spine Pattern Mat
hing problem to the Subset Mat
hing problem inlinear time. This is, in fa
t, readily done. The spine of the text tree gives the text string for theSubset Mat
hing problem; the subtrees hanging from this spine determine the various text sets.Analogous fa
ts hold for the pattern.The two redu
tions above imply that that the Tree Pattern Mat
hing problem 
an be redu
edto several instan
es of the Subset Mat
hing Problem, the sum of the sizes of these instan
es beinglinear. Therefore, an algorithm for the Subset Mat
hing problem yields an algorithm for theTree Pattern Mat
hing problem with the same time 
omplexity.Cole and Hariharan [2℄ gave a randomized algorithm for the Subset Mat
hing problem run-ning in time O �(n+ s) log3m�, where s is the sum of the sizes of all the pattern and text sets.Subsequently, Indyk [8℄ gave a deterministi
 algorithm for the Subset Mat
hing problem runningin time O�(n+ s)mq log logmlogm (1+o(1))�. Finally, Cole, Hariharan and Indyk [3℄ gave a determinis-ti
 algorithm running in time O �(n+ s) log3m� and a randomized algorithm running in timeO�(n+ s) log3mlog logm�. The above algorithms will be des
ribed in a 
ompanion paper [4℄. It followsthat there is a deterministi
 algorithm running in time O(n log3m) and a randomized algorithmrunning in time O�n log3mlog logm� for the Tree Pattern Mat
hing problem.This paper is organized as follows. Se
tion 2 gives some required de�nitions. Se
tion 3des
ribes the redu
tion of the Spine Pattern Mat
hing Problem to the Subset Mat
hing problem.Se
tion 4 des
ribes the redu
tion from the Tree Pattern Mat
hing problem to the Spine PatternMat
hing problem. 2
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Figure 1: Example of Subset Mat
hing.

0 0 1 0 0 1 0 0 1period
Figure 2: A Path and its Asso
iated String2 De�nitionsTree Pattern Mat
hing: We 
onsider ordered binary trees, i.e., ea
h internal node has a leftand/or a right 
hild. The text tree t has n nodes and the pattern tree p has m nodes. Theproblem entails �nding all nodes v in t where p mat
hes, i.e., when the root of p is aligned withv, ea
h node in p is aligned with a node in t.Paths, Strings and Periods. Note that paths in trees p and t 
an be expressed as stringsover a two 
hara
ter alphabet, one 
hara
ter signifying a left edge and the other a right edge(see Fig.2: 0 represents a left edge and 1 a right edge). The period of a string s[1 : : : jsj℄ is thesmallest number j > 0 su
h that s[i℄ = s[i + j℄, for all i, 1 � i � jsj � j. If no su
h j existsthen the period of s is de�ned to be jsj. The period of a path is de�ned to be the period of itsasso
iated string. The following lemma is 
lassi
al [10℄.Lemma 2.1 If k � jsj � j is su
h that the period j of s does not divide k, then the strings[k + 1 : : : k + j℄ di�ers from the string s[1 : : : j℄.3



Spine Pattern Mat
hing: This is a restri
ted version of the Tree Pattern Mat
hing problem.In this problem, the text and the pattern ea
h have one designated path, 
alled their spines.The text and pattern spines originate at their respe
tive roots and are maximal paths havingthe same period, � say (the � needed for Tree Pattern Mat
hing will be determined later). Infa
t, both spines when represented as strings will have the form xkx0, where jxj = � and x0 isa pre�x of x (here, the values of k and x0 
ould di�er for the pattern spine and the text spinebut x is identi
al for both spines). All mat
hes of the pattern in whi
h the pattern spine falls
ompletely on the text spine are sought.From maximality, it follows that both spines terminate at nodes with at most one 
hild (a
hild whi
h when added to the spine destroys its periodi
 stru
ture). Sin
e both spines havethe same period �, it follows that the pattern spine will fall 
ompletely on the text spine only ifthe root of the pattern is pla
ed at 
ertain nodes on the text spine. These nodes will o

ur atinteger multiples of � from the text root and will be designated \an
hor nodes". An
hor nodeswill have further restri
tions whi
h will be des
ribed later.3 Redu
ing Spine Pattern Mat
hing to Subset Mat
hingThe spines of the pattern p and the text t will de�ne the strings for the Subset Mat
hing problem.The subsets at ea
h lo
ation in these strings will 
orrespond to the o�-spine subtrees of the spinenodes; an o�-spine subtree is a subtree whose root is a non-spine node but the parent of whoseroot is on the spine. These subsets are obtained by labelling the nodes of the o�-spine subtreesas follows (see Fig.3). The key fa
t about this labelling is that two nodes in two distin
t o�-spinesubtrees (both of whi
h 
ould be in the pattern or in the text, or alternatively, one 
ould be inthe pattern and the other in the text) get the same label if and only if the paths from thesenodes to the roots of their respe
tive o�-spine subtrees represent identi
al strings.The o�-spine subtrees of p are labelled �rst. The subtrees are overlaid to form a 
ombinedpattern subtree; the overlaying aligns the roots of the o�-spine subtrees and re
ursively overlaystheir subtrees. Then the 
ombined pattern subtree is traversed by any 
onvenient method, e.g.a breadth �rst traversal, and the nodes are labelled by the asso
iated numbering. For ea
h spinenode, we form a subset 
onsisting of the 
olle
tion of numbers labelling the nodes of its o�-spinesubtree. This 
olle
tion of subsets de�nes the pattern for the Subset Mat
hing problem instan
e.The o�-spine subtrees of t are labelled using the same labelling. To do this, ea
h o�-spine textsubtree and the 
ombined pattern subtree are traversed in lo
k-step1. We state the followingeasy fa
t about the time 
omplexity of the above 
omputation.Fa
t 1 The labels to nodes in o�-spine subtrees of the pattern 
an be given in O(m) time. Thelabels to any one o�-spine subtree t0 in the text 
an be given in time O(minfjt0j;mg). The totaltime taken for the labelling is thus O(n + m); 
onsequently, the size of the resulting SubsetMat
hing problem is also O(n+m).Clearly, ea
h mat
h in the instan
e of the Subset Mat
hing Problem beginning at a lo
ation
orresponding to an an
hor node has a 
orresponding mat
h in the instan
e of the Spine PatternMat
hing problem and 
onversely. This 
ompletes the redu
tion from Spine Pattern Mat
hingto Subset Mat
hing.1Re
all our remark from the introdu
tion that the 
ase of larger degree and labelled trees 
an be handledwithout any extra overhead. Larger degree is simply handled by the usual binarization. Labelled trees arehandled by pairing the given labels with the labels obtained here.4
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4 Redu
ing Tree Pattern Mat
hing to Spine Pattern Mat
hingFirst, we identify a parti
ular path � as the spine of p. Let � have period �. Next, we de
omposet into maximal paths with period �; as we will show, there are O � nm� su
h paths of total lengthO(n). We obtain a tree for ea
h su
h path in a manner to be des
ribed. The sum of the sizesof these trees will also be O(n). Solving the Spine Pattern Mat
hing problem for p and ea
h ofthe trees obtained from t will suÆ
e to determine all o

urren
es of p in t.De�nitions. The size of a node v in a tree is de�ned to be the number of nodes in the subtreerooted at v. Let tv denote the subtree of t rooted at a node v in t and let pv denote the subtreeof p rooted at a node v in p.4.1 Pro
essing the PatternThe Spine of the Pattern. We de�ne the spine � of the pattern p to be the following pathfrom the root to a node with at most one 
hild. � 
onsists of two segments, �1 and �2. �1 is a
entroid path, i.e., it is obtained by moving to the 
hild with larger size at ea
h step, with tiesbroken arbitrarily. �1 ends when a node x su
h that jpxj � m2 is rea
hed. Note that jpxj � m4 .Let � be the period of �1. �2 is the longest path starting at x su
h that the path � 
ontinues tohave period �. Note that �2 has a vertex in 
ommon with �1.4.2 De
omposing the TextDe�nitions. A path in t from a node u to a node v in tu is a �-path if it has period � andis identi
al to the spine of the pattern in the �rst � lo
ations (when both paths are viewed asstrings). This path is maximal if extending it to the distan
e � an
estor of u or either 
hild ofv results in a path whi
h is not a �-path (in fa
t, v 
an have only one 
hild). The link node l inthis path is the node 
losest to v su
h that jtlj � m4 . The an
hor nodes w on this path satisfythe following properties. These properties will be justi�ed shortly.1. tw has at least m nodes.2. The distan
e from w to l is at least j�1j, and thus has length at least �.3. The distan
e from w to v is at least j�j.4. Consider the subtrees hanging from the maximal �-path starting at w. Classify them asred subtrees if they have at least m4 nodes and as green subtrees otherwise. If all thesesubtrees ex
ept exa
tly one are green, then the green subtrees plus the path together haveat least m=2 nodes.5. The distan
e from u to w is an integer multiple of �.We form a 
olle
tion C of maximal �-paths in t. This 
olle
tion 
omprises all the paths whosestart nodes (whi
h are an
hor nodes) satisfy properties 1{4 above.Note that these paths need not be disjoint; however their 
ombined length will still be O(n)as we shall show later, in Lemma 4.11 and Corollary 4.3. The algorithm for 
onstru
ting thesepaths is given next. 6
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Figure 4: A �-Path in C.The Path De
omposition Algorithm. The de
omposition is obtained using the followingalgorithm. For ea
h node x in T , this algorithm �rst determines the longest �-path whi
h beginsat x. This is done in O(n) time using a Knuth-Morris-Pratt type automaton in 
onjun
tion witha depth-�rst traversal of t as in the algorithm of Ho�man and O'Donell [7℄. Next, the algorithmdetermines those maximal �-paths found above whi
h satisfy Properties 1{4, dis
arding all otherpaths. In fa
t, this �ltering 
an easily be done dire
tly on the 
y when the paths are beingdetermined in O(n) time. The details are left to the reader. Finally, the algorithm traverses thepaths in C and determines an
hor nodes satisfying the required properties. Sin
e, as we willsee, the sum of the length of paths in C is O(n), the total time taken above is O(n).Signi�
an
e of An
hor Nodes on �-Paths. Note that ea
h node w is an an
hor node onsome path in C ex
ept in the following four situations. In ea
h of these situations, the pattern
annot mat
h at w.1. jtwj < m.2. The longest �-path in tw starting at w and ending at some node w0 with the property thatjtw0 j � m4 is shorter than �1.3. The longest �-path in tw starting at w is shorter than �.4. The maximal �-path in tw starting at w satis�es the following: the subtrees hanging fromthe path are all green with exa
tly one ex
eption, and the sum of the sizes of these greensubtrees and the length of the path itself is less than m=2. The pattern 
annot mat
h atw if this 
ondition holds. This 
an be seen as follows. For the pattern to mat
h at w,there must be at most one subtree hanging from � in p whi
h 
an be red. By the 
entroidnature of �1 and the stopping 
ondition for �1, this subtree 
an have size at most m=2.Therefore, � and all other subtrees hanging from it together have size at least m=2.Thus determining mat
hes of p at an
hor nodes on paths in C suÆ
es to determine all mat
hesof p in t. Further, note that when p is pla
ed with its root at an an
hor node on some path inC, the spine of p lies 
ompletely on that path. 7



4.3 Pro
essing Paths in C.The purpose of pro
essing a path � 2 C is to determine whether or not p mat
hes at w, for ea
han
hor node w on �. Ea
h path � in C will be pro
essed as follows.Let u be the node at whi
h � starts. u itself is an an
hor node. Whether or not the patternmat
hes at u is determined in a brute for
e manner. This requires O(m) time. We will show inLemma 4.11 that there are O(n=m) paths and hen
e the total time taken over all paths in thispro
ess is just O(n).Mat
hes at other an
hor nodes on � are determined di�erently, i.e., by redu
tion to aninstan
e of the Spine Pattern Mat
hing problem.Consider the portion of � starting from the se
ond an
hor node onwards, denoted trun
(�).trun
(�) provides the spine of the text instan
e. Clearly, there is a mat
h of p rooted at anan
hor node on trun
(�), if and only if there is a mat
h at the same lo
ation in the 
orrespondingSpine Pattern Mat
hing problem instan
e.Let s1; : : : ; sj�j�� denote the o�-spine subtrees, if any, for trun
(�), in in
reasing order ofdistan
e from the start node of �. Some of the si's might not exist. By Fa
t 1, redu
ing thisinstan
e of the Spine Pattern Mat
hing problem to the Subset Mat
hing problem takes timeO(Pj�j��i=1 minfjsij;mg+ j�j � �) (plus, of 
ourse, O(m) time for pro
essing the pattern, whi
h is
ommon to all the instan
es of the Spine Pattern Mat
hing problem whi
h result above).The total time taken to pro
ess � is thus O(m+Pj�j��i=1 minfjsij;mg+ j�j� �). This quantity
an be split into 4 parts: O(m) time for 
he
king for an o

urren
e of p at the �rst an
hor node,time proportional to its size for ea
h green subtree hanging from trun
(�), O(m) time for ea
hred subtree hanging from trun
(�), and O(j�j � �) time for the path itself. We need to showthat this sums to O(n) over all paths �. By Lemma 4.11, there are O(n=m) paths; hen
e the�rst part sums to O(n) time. By Corollary 4.4, the green subtrees in the trun
ated paths aredisjoint; hen
e the se
ond part sums to O(n). By Corollary 4.12, there are O(n=m) red subtrees,hen
e the third part sums to O(n). Finally, by Corollary 4.3, the trun
ated path lengths sumto O(n), and hen
e the fourth part sums to O(n) also. This yields O(n) time overall.4.4 Showing O(n) TimeEventually, we will seek to bound the number of red subtrees over all paths in C. We will dothis by identifying a set of O(n=m) nodes of t, 
alled marked nodes. Ea
h red subtree will beassigned to either a marked node or a path in C, and ea
h marked node and ea
h path willre
eive at most a 
onstant number of red subtrees. We will also show in Se
tion 4.4.1 that thereare O(n=m) paths in C; it then follows that there are O(n=m) red subtrees.Marked Text Nodes. We mark the following nodes in t: those nodes whose left and rightsubtrees both 
ontain at least m4 nodes.Lemma 4.1 The number of marked nodes in t is O( nm ).Proof. There are only O( nm) marked nodes v with the property that all nodes in either the leftsubtree of v or the right subtree of v are unmarked; this is be
ause both these subtrees have atleast m4 nodes. The number of marked nodes v su
h that both the left subtree of v and the rightsubtree of v 
ontain marked nodes is at most 1 less than the number of marked nodes withoutthis property. The lemma follows. 2Some Properties of Paths in C. 8



�0Link Nodes�
u0ubran
h node� � � 1 wFigure 5: Overlap is at most � � 1.Lemma 4.2 Consider two paths �; �0 in C starting at nodes u and u0, respe
tively (see Fig.5).Suppose u0 lies on �. Then only the �rst � � 1 edges of �0 
an also be present in �.Proof. From the 
onstru
tion of C, the length of the path between u and u0 is not divisible by�. The lemma then follows from Lemma 2.1. 2Corollary 4.3 If the �rst � edges are removed from ea
h path in C then the resulting 
olle
tionof paths is node disjoint. Hen
e the trun
ated paths have total lengths O(n). Also, as the linknode is not among the �rst � nodes by Property 2 of paths in C, the link node of �0 
annot lieon �.Corollary 4.4 The green subtrees hanging from the trun
ated paths are all disjoint.Proof. It suÆ
es to 
onsider the green subtrees hanging from two paths �, �0 2 C, starting atu; u0, respe
tively, where u is a proper an
estor of u0 (for if u and u0 are unrelated then 
learlythe green trees hanging from � and �0 are disjoint.) By Corollary 4.3, trun
(�) and trun
(�0)are disjoint. For a 
ontradi
tion, suppose that G is a green subtree hanging from trun
(�) and
ontaining v, a node in a green subtree hanging from trun
(�0). It follows from Lemma 4.2 thattrun
(�0) lies within G. But trun
(�0) in
ludes the link node l0 of �0 and the subtree of t rootedat l0 
ontains at least m=4 nodes. Then G, whi
h 
ontains this subtree, would be red. 24.4.1 Showing jCj = O( nm).Lemma 4.5 Let �; �0 be as in Lemma 4.2 (see Fig.5). Then �0 
annot overlap a node in � whi
his a proper des
endant of �'s link node w. Therefore, if �0 overlaps the link node w of �, then itbran
hes away from � at w.Proof. By Corollary 4.3, the link node of �0 is not on �. If �0 overlaps a node w0 in � whi
his a proper des
endant of w, then jtw0 j � m4 , and therefore w 
annot be the link node of �, a
ontradi
tion. 2Partitioning C into Disjoint Chains of Paths. We partition the paths in C into O( nm)disjoint ordered groups Ci, whi
h we 
all 
hains. Paths in a 
hain have the property that ea
h9



Link Nodes A Marked Node
Ci Cj

Figure 6: A Chain of Three Paths and Two Overlapping Chains.path �0 overlaps the link node of the previous path � in the 
hain; in addition, among all pathsin C whi
h overlap the link node of �, �0 is the path whose start node is 
losest to the startnode of �. Ea
h path in C whose link node is not overlapped by any other path ends its 
hain.By Corollary 4.3, the portions below the link nodes in the various paths in C are all disjoint;therefore, only 
ores of various 
hains 
an overlap ea
h other, where the 
ore of a 
hain Ci is thepath formed by the union of the paths in Ci, with portions below the link nodes in ea
h pathdis
arded (see Fig.6).Lemma 4.6 Consider two distin
t 
hains Ci; Cj. Let v be the node furthest from the root of twhi
h is 
ommon to both 
hains. Then v is a marked node (see Fig.6).Proof. Sin
e v is in both 
hains, there in a path � 2 Ci and a path �0 2 Cj 
ontaining v. Inaddition, � and �0 separate at v. Without loss of generality, assume that the start node of � is
loser to the root than the start node of �0. By Corollary 4.3, the link node of �0 does not appearon �. We 
onsider two 
ases depending upon whether or not �0 overlaps the link node of �.First, suppose �0 doesn't overlap the link node of �. Then v must be a marked node sin
ethe link nodes of both paths are des
endants of v and the paths separate at v.Next, suppose �0 indeed overlaps the link node w of �. By Lemma 4.5, v = w. Sin
e �0 62 Ci,there must be a path �00 2 Ci whi
h begins between the start nodes of � and �0 and whi
h alsooverlaps the link node w of � (�00 is the path next to � in the 
hain Ci). By Lemma 4.5, � and�00 must separate at w = v. Then �00 must share a 
hild of v with �0, whi
h 
ontradi
ts thede�nition of v. 2Lemma 4.7 Consider path � in some 
hain Ci and two 
onse
utive paths �0; �00 in some 
hainCj, where i may or may not equal j, with � 6= �0. Suppose that the start nodes of �; �0; �00 appearin that order along the path from the root to the start node of �00. Then �00 and � do not have avertex in 
ommon.Proof. Let x and y be respe
tively, the number of edges that �0 are � have in 
ommon, and �00and �0 have in 
ommon. By Corollary 4.3, x � �� 1. Let the number of edges on the path from10



the start node of �0 to its link node be z. Re
all that �0 and �00 separate at the link node of �0.Suppose �00 overlaps �. Then, z � y � x � � � 1. z � y must be a period of the path from theroot of �0 to its link node (sin
e both �0 and �00 are �-paths). Sin
e this path has length at leastj�1j by Property 2 of paths in C, it has period �. Therefore, z� y � �, whi
h is a 
ontradi
tion.2Corollary 4.8 Only the �rst path in 
hain Cj 
an possibly overlap some path in a 
hain Ci,where i 6= j and the start node of Ci is an an
estor of the start node of Cj.Corollary 4.9 Consider a path on a 
hain; the only paths on its 
hain it may overlap are itsimmediate prede
essor and su

essor.Lemma 4.10 The number of 
hains is O( nm).Proof. We prove that the link nodes of the last paths in the various 
hains are in
omparable,i.e., no two su
h nodes have an an
estor-des
endant relationship. Then, sin
e ea
h link node vsatis�es jtvj � m=4, the lemma follows.Suppose two paths, ea
h last in its respe
tive 
hain, have 
omparable link nodes. Further,suppose the link node of the se
ond path is a des
endant of the link node of the �rst path. Then,by Property 1 of paths in C and the de�nition of the link node, the start node of the se
ondpath must be an an
estor of the link node of the �rst path. In this 
ase, the �rst path 
ould notbe the last in its 
hain, a 
ontradi
tion. 2Partitioning C into 3 Sets. We partition C into three sets Cf ; Ce; Co. Cf 
omprises thosepaths whi
h are the �rst paths in their respe
tive 
hains. Ce 
omprises the even numbered pathsin ea
h 
hain and Co 
omprises odd numbered paths (starting from three) in ea
h 
hain.Lemma 4.11 The number of paths in C is O( nm).Proof. By Lemma 4.10, jCf j = O( nm).Consider Ce next. The analysis for Co is identi
al. By Corollaries 4.8 and 4.9, the paths inCe are non-overlapping. We show that the number of paths in Ce is O( nm ).The number of paths in Ce whi
h have a marked node on them is O( nm) by Lemma 4.1.Consider a path � in Ce whi
h does not have a marked node. Then, ex
ept possibly for onesubtree, ea
h subtree of t hanging from � is green. By Property 4 of paths in C, the sum ofthe sizes of the green subtrees hanging from � plus the length of � is at least m=2. We 
hargeO( 1m ) to ea
h of the nodes in the green subtrees and the nodes on � for this path. By Property1 of paths in C and the non-overlapping nature of paths in Ce, none of the nodes in the greensubtrees 
an be present on any path in Ce. Further, the set of green subtrees hanging fromvarious paths in Ce are 
learly disjoint. It follows that the total 
harge to all nodes in t andtherefore, the number of paths in Ce, is O( nm ). 2Corollary 4.12 There are O(n=m) red subtrees over all paths in C.Proof. If a path has k red subtrees it has k � 1 marked nodes (namely the parents of ea
hred tree apart from the bottommost one on the path). As there are O(n=m) marked nodes, byLemma 4.1, and O(n=m) paths, by Lemma 4.11, the result follows. 2This leads to the following theorem.Theorem 4.13 There is a linear time redu
tion from the Tree Pattern Mat
hing problem to a
olle
tion of instan
es of the Subset Mat
hing problem, of overall linear size.11



5 Further CommentsIt is not 
ompletely 
lear this 
onstru
tion maps unlabelled trees to the set strings as 
ompa
tlyas possible, for an
estral information is lost in the redu
tion. Indeed, an unlabelled n-node tree
an be represented using O(n) bits, whereas a size n set problem in general requires �(n logn)bits, and will do so after our redu
tion. In general, n labels would require �(n logn) bits, so itappears the redu
tion is tight for labelled trees. Thus this raises the question of whether thereare algorithms for unlabelled tree pattern mat
hing that are faster by a �(logn) fa
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