Tree Pattern Matching to Subset Matching in Linear Time*

Richard Colef Ramesh Hariharan?

Abstract

This paper is the first of two papers describing an O (npolylog(m)) time algorithm for the
Tree Pattern Matching problem on a pattern of size m and a text of size n. In this paper, we
show an O(n+m) time Turing reduction from the Tree Pattern Matching problem to another
problem called the Subset Matching problem. The second paper will give efficient determinis-
tic and randomized algorithms for the Subset Matching problem. Together, these two papers

will imply an O (n log® m + m) time deterministic algorithm and an O (nlgzﬁzgmm + m) time

randomized algorithm for the Tree Pattern Matching problem.

1 Introduction

In the Tree Pattern Matching problem, the text and the pattern are ordered, binary trees and all
occurrences of the pattern in the text are sought. Here, the pattern occurs at a particular text
position if placing the pattern with root at that text position leads to a situation in which each
pattern node overlaps some text node. This problem is an important problem and has many
applications (see [7]). Actually, in these applications, the tree need not be binary and the edges
may be labelled; however, as shown in [5], this general problem can be converted to a problem
on binary trees with unlabelled edges but with a blow-up in size proportional to the logarithm
of the size of the pattern. In fact, this blow-up can also be avoided in our approach, as we will
indicate in our description.

The naive algorithm for Tree Pattern Matching takes time O(nm), where n is the text size
and m is the pattern size. Hoffman and O’Donell [7] gave another algorithm with the same
worst case bound. This algorithm decomposes the pattern into strings, each string representing
a root-to-leaf path. It then finds all occurrences of each of these strings in the text tree. The
first o(nm) algorithm was obtained by Kosaraju [9] who first noticed the connection of the Tree
Pattern Matching problem to the problem of String Matching with Don’t-Cares and the problem
of convolving two strings. Kosaraju’s algorithm takes O(nm ™ logm) time. Dubiner, Galil and
Magen [5] improved Kosaraju's algorithm by discovering and exploiting periodicities in paths
in the pattern. They obtained a bound of O(nm*®logm). This was the best bound known to
date. Dubiner, Galil and Magen also made the observation that the naive algorithm actually
takes O(nh) time, where h is the height of the pattern.

In this paper, we show how to reduce the Tree Pattern Matching problem to the Subset
Matching problem in linear time. The Subset Matching problem is to find all occurrences of a

*This work was supported in part by NSF grants CCR9202900, CCR9503309, CCR9800085. An abstract of
this work appeared in the Proceedings of the 29th ACM Symposium on Theory of Computing, 1997.
fCourant Institute, New York University, cole@cs.nyu.edu.

HIndian Institute of Science, Bangalore, ramesh@csa.iisc.ernet.in. This work was done in part while visiting
NYU.

pattern string p of length m in a text string ¢ of length n, where each pattern and text location
is a set of characters drawn from some alphabet. The pattern is said to occur at text position 4
if the set p[j] is a subset of the set t[i +j — 1], for all j, 1 < 7 < m. It is required to find all text
locations at which the pattern matches, i.e., each pattern set is a subset of the aligned text set
(see Fig.1).

The reduction from Tree Pattern Matching to Subset Matching proceeds in two steps.

e We show that the general Tree Pattern Matching problem can be reduced to the following
special case, called Spine Pattern Matching, by a linear time Turing reduction. In Spine Pattern
Matching, there is a special path in each of the pattern and text called their spines. The spine
begins at the root of its tree, and in addition each node on the spine has at most one non-spine
child. Spines have additional properties as well, which will be described later. All matches of
the pattern in the text are sought with the additional restriction that the spine of the pattern
must match a portion of the spine of the text, i.e., nodes on the pattern spine must be aligned
with nodes on the text spine. For intuition, one can think of the spine as being the path of
left children starting at the root (and in fact one can reduce the general problem to this case in
linear time, although we will not do so).

The above reduction may create several instances of the Spine Pattern Matching problem, but
the sum of the sizes of these instances will be linear. This reduction is completely deterministic.
It proceeds by using the periodicity structure of paths and by decomposing the text tree into
periodic paths in a non-trivial manner. Each path then gives a spine for the Spine Pattern
Matching problem.

e Next, we reduce the Spine Pattern Matching problem to the Subset Matching problem in
linear time. This is, in fact, readily done. The spine of the text tree gives the text string for the
Subset Matching problem; the subtrees hanging from this spine determine the various text sets.
Analogous facts hold for the pattern.

The two reductions above imply that that the Tree Pattern Matching problem can be reduced
to several instances of the Subset Matching Problem, the sum of the sizes of these instances being
linear. Therefore, an algorithm for the Subset Matching problem yields an algorithm for the
Tree Pattern Matching problem with the same time complexity.

Cole and Hariharan [2] gave a randomized algorithm for the Subset Matching problem run-

ning in time O ((n + 5) log? m), where s is the sum of the sizes of all the pattern and text sets.
Subsequently, Indyk [8] gave a deterministic algorithm for the Subset Matching problem running

in time O((n 4 ,q)m\/%ﬁﬂj(l)))

. Finally, Cole, Hariharan and Indyk [3] gave a determinis-

tic algorithm running in time O ((n + 5) log® m) and a randomized algorithm running in time

O ((n +3) lg‘g%ig’"r‘n). The above algorithms will be described in a companion paper [4]. Tt follows

that there is a deterministic algorithm running in time O(n log® m) and a randomized algorithm

running in time O(n log” m) for the Tree Pattern Matching problem.

log logm

This paper is organized as follows. Section 2 gives some required definitions. Section 3
describes the reduction of the Spine Pattern Matching Problem to the Subset Matching problem.
Section 4 describes the reduction from the Tree Pattern Matching problem to the Spine Pattern
Matching problem.

,B0E0E0R0GEEE

al a
c c match
p
a al
C C not a match
a al
c c

not a match

Figure 1: Example of Subset Matching.

0010010012
-
period

Figure 2: A Path and its Associated String

2 Definitions

Tree Pattern Matching: We consider ordered binary trees, i.e., each internal node has a left
and/or a right child. The text tree ¢ has n nodes and the pattern tree p has m nodes. The
problem entails finding all nodes v in ¢ where p matches, i.e., when the root of p is aligned with
v, each node in p is aligned with a node in ¢.

Paths, Strings and Periods. Note that paths in trees p and ¢ can be expressed as strings
over a two character alphabet, one character signifying a left edge and the other a right edge
(see Fig.2: 0 represents a left edge and 1 a right edge). The period of a string s[1...|s|] is the
smallest number j > 0 such that s[i] = s[i + j], for all ¢, 1 <4 < |s| — j. If no such j exists
then the period of s is defined to be |s|. The period of a path is defined to be the period of its
associated string. The following lemma is classical [10].

Lemma 2.1 If k < |s| — j is such that the period j of s does not divide k, then the string
slk+1...k+ j| differs from the string s[1 ... j].

Spine Pattern Matching: This is a restricted version of the Tree Pattern Matching problem.
In this problem, the text and the pattern each have one designated path, called their spines.
The text and pattern spines originate at their respective roots and are maximal paths having
the same period, € say (the 6 needed for Tree Pattern Matching will be determined later). In
fact, both spines when represented as strings will have the form 2%z, where |2| = 6 and 2/ is
a prefix of z (here, the values of k£ and 2’ could differ for the pattern spine and the text spine
but z is identical for both spines). All matches of the pattern in which the pattern spine falls
completely on the text spine are sought.

From maximality, it follows that both spines terminate at nodes with at most one child (a
child which when added to the spine destroys its periodic structure). Since both spines have
the same period 6, it follows that the pattern spine will fall completely on the text spine only if
the root of the pattern is placed at certain nodes on the text spine. These nodes will occur at
integer multiples of 8 from the text root and will be designated “anchor nodes”. Anchor nodes
will have further restrictions which will be described later.

3 Reducing Spine Pattern Matching to Subset Matching

The spines of the pattern p and the text ¢ will define the strings for the Subset Matching problem.
The subsets at each location in these strings will correspond to the off-spine subtrees of the spine
nodes; an off-spine subtree is a subtree whose root is a non-spine node but the parent of whose
root is on the spine. These subsets are obtained by labelling the nodes of the off-spine subtrees
as follows (see Fig.3). The key fact about this labelling is that two nodes in two distinct off-spine
subtrees (both of which could be in the pattern or in the text, or alternatively, one could be in
the pattern and the other in the text) get the same label if and only if the paths from these
nodes to the roots of their respective off-spine subtrees represent identical strings.

The off-spine subtrees of p are labelled first. The subtrees are overlaid to form a combined
pattern subtree; the overlaying aligns the roots of the off-spine subtrees and recursively overlays
their subtrees. Then the combined pattern subtree is traversed by any convenient method, e.g.
a breadth first traversal, and the nodes are labelled by the associated numbering. For each spine
node, we form a subset consisting of the collection of numbers labelling the nodes of its off-spine
subtree. This collection of subsets defines the pattern for the Subset Matching problem instance.
The off-spine subtrees of ¢ are labelled using the same labelling. To do this, each off-spine text
subtree and the combined pattern subtree are traversed in lock-step!. We state the following
easy fact about the time complexity of the above computation.

Fact 1 The labels to nodes in off-spine subtrees of the pattern can be given in O(m) time. The
labels to any one off-spine subtree t' in the text can be given in time O(min{|t'|,m}). The total
time taken for the labelling is thus O(n + m); consequently, the size of the resulting Subset
Matching problem is also O(n + m).

Clearly, each match in the instance of the Subset Matching Problem beginning at a location
corresponding to an anchor node has a corresponding match in the instance of the Spine Pattern
Matching problem and conversely. This completes the reduction from Spine Pattern Matching
to Subset Matching.

'"Recall our remark from the introduction that the case of larger degree and labelled trees can be handled
without any extra overhead. Larger degree is simply handled by the usual binarization. Labelled trees are
handled by pairing the given labels with the labels obtained here.

T2

Dix|

=>(+ pooocw

(o +oocw

I

I

I
set of names r;
of nodes in

\

T|x| =0

3

N
i
w

Figure 3: The Spine and its Associated Set String.

4 Reducing Tree Pattern Matching to Spine Pattern Matching

First, we identify a particular path 7 as the spine of p. Let 7 have period 8. Next, we decompose
t into maximal paths with period 6; as we will show, there are O (&) such paths of total length
O(n). We obtain a tree for each such path in a manner to be described. The sum of the sizes
of these trees will also be O(n). Solving the Spine Pattern Matching problem for p and each of

the trees obtained from ¢ will suffice to determine all occurrences of p in ¢.

Definitions. The size of a node v in a tree is defined to be the number of nodes in the subtree
rooted at v. Let £, denote the subtree of £ rooted at a node v in ¢ and let p, denote the subtree
of p rooted at a node v in p.

4.1 Processing the Pattern

The Spine of the Pattern. We define the spine 7 of the pattern p to be the following path
from the root to a node with at most one child. 7 consists of two segments, m; and my. 7 is a
centroid path, i.e., it is obtained by moving to the child with larger size at each step, with ties
broken arbitrarily. m; ends when a node z such that |p,| < % is reached. Note that |p,| > .
Let 6 be the period of 1. 79 is the longest path starting at x such that the path 7 continues to
have period 6. Note that mo has a vertex in common with 7.

4.2 Decomposing the Text

Definitions. A path in ¢ from a node u to a node v in ¢, is a #-path if it has period 0 and
is identical to the spine of the pattern in the first 6 locations (when both paths are viewed as
strings). This path is mazimal if extending it to the distance 6 ancestor of u or either child of
v results in a path which is not a #-path (in fact, v can have only one child). The link node [in
this path is the node closest to v such that |t;| > 5. The anchor nodes w on this path satisfy
the following properties. These properties will be justified shortly.

1. t,, has at least m nodes.
2. The distance from w to [is at least |m|, and thus has length at least 6.
3. The distance from w to v is at least |x|.

4. Consider the subtrees hanging from the maximal 8-path starting at w. Classify them as
red subtrees if they have at least 7 nodes and as green subtrees otherwise. If all these
subtrees except exactly one are green, then the green subtrees plus the path together have
at least m/2 nodes.

5. The distance from u to w is an integer multiple of 6.

We form a collection C' of maximal #-paths in £. This collection comprises all the paths whose
start nodes (which are anchor nodes) satisfy properties 1-4 above.

Note that these paths need not be disjoint; however their combined length will still be O(n)
as we shall show later, in Lemma 4.11 and Corollary 4.3. The algorithm for constructing these
paths is given next.

Anchor Nodes

> m nodes
> |m|

Red Subtree
> 7 nodes

Link Node

2 ||

Green Subtree
< 77 nodes

Figure 4: A 6-Path in C.

The Path Decomposition Algorithm. The decomposition is obtained using the following
algorithm. For each node z in T, this algorithm first determines the longest -path which begins
at . This is done in O(n) time using a Knuth-Morris-Pratt type automaton in conjunction with
a depth-first traversal of ¢ as in the algorithm of Hoffman and O’Donell [7]. Next, the algorithm
determines those maximal #-paths found above which satisfy Properties 1-4, discarding all other
paths. In fact, this filtering can easily be done directly on the fly when the paths are being
determined in O(n) time. The details are left to the reader. Finally, the algorithm traverses the
paths in C' and determines anchor nodes satisfying the required properties. Since, as we will
see, the sum of the length of paths in C'is O(n), the total time taken above is O(n).

Significance of Anchor Nodes on f#-Paths. Note that each node w is an anchor node on
some path in C except in the following four situations. In each of these situations, the pattern
cannot match at w.

L |tw] < m.

2. The longest #-path in t,, starting at w and ending at some node w’ with the property that
tyr| > 7 is shorter than my.

3. The longest #-path in t,, starting at w is shorter than .

4. The maximal #-path in t,, starting at w satisfies the following: the subtrees hanging from
the path are all green with exactly one exception, and the sum of the sizes of these green
subtrees and the length of the path itself is less than m/2. The pattern cannot match at
w if this condition holds. This can be seen as follows. For the pattern to match at w,
there must be at most one subtree hanging from 7 in p which can be red. By the centroid
nature of m; and the stopping condition for 7, this subtree can have size at most m/2.
Therefore, 7 and all other subtrees hanging from it together have size at least m/2.

Thus determining matches of p at anchor nodes on paths in C' suffices to determine all matches
of p in t. Further, note that when p is placed with its root at an anchor node on some path in
C, the spine of p lies completely on that path.

4.3 Processing Paths in C.

The purpose of processing a path p € C'is to determine whether or not p matches at w, for each
anchor node w on p. Each path p in C' will be processed as follows.

Let u be the node at which p starts. u itself is an anchor node. Whether or not the pattern
matches at u is determined in a brute force manner. This requires O(m) time. We will show in
Lemma 4.11 that there are O(n/m) paths and hence the total time taken over all paths in this
process is just O(n).

Matches at other anchor nodes on p are determined differently, i.e., by reduction to an
instance of the Spine Pattern Matching problem.

Consider the portion of p starting from the second anchor node onwards, denoted trunc(p).
trunc(p) provides the spine of the text instance. Clearly, there is a match of p rooted at an
anchor node on trunc(p), if and only if there is a match at the same location in the corresponding
Spine Pattern Matching problem instance.

Let s1,...,5),—g denote the off-spine subtrees, if any, for trunc(p), in increasing order of
distance from the start node of p. Some of the s;’s might not exist. By Fact 1, reducing this
instance of the Spine Pattern Matching problem to the Subset Matching problem takes time
O(ZLQ;G min{|s;|,m} + |p| — @) (plus, of course, O(m) time for processing the pattern, which is
common to all the instances of the Spine Pattern Matching problem which result above).

The total time taken to process p is thus O(m + Z‘ii‘;a min{|s;|, m} + |p| —6). This quantity
can be split into 4 parts: O(m) time for checking for an occurrence of p at the first anchor node,
time proportional to its size for each green subtree hanging from trunc(p), O(m) time for each
red subtree hanging from trunc(p), and O(|p| —) time for the path itself. We need to show
that this sums to O(n) over all paths p. By Lemma 4.11, there are O(n/m) paths; hence the
first part sums to O(n) time. By Corollary 4.4, the green subtrees in the truncated paths are
disjoint; hence the second part sums to O(n). By Corollary 4.12, there are O(n/m) red subtrees,
hence the third part sums to O(n). Finally, by Corollary 4.3, the truncated path lengths sum
to O(n), and hence the fourth part sums to O(n) also. This yields O(n) time overall.

4.4 Showing O(n) Time

Eventually, we will seek to bound the number of red subtrees over all paths in C. We will do
this by identifying a set of O(n/m) nodes of t, called marked nodes. Each red subtree will be
assigned to either a marked node or a path in ', and each marked node and each path will
receive at most a constant number of red subtrees. We will also show in Section 4.4.1 that there
are O(n/m) paths in C; it then follows that there are O(n/m) red subtrees.

Marked Text Nodes. We mark the following nodes in ¢: those nodes whose left and right
subtrees both contain at least 7t nodes.

Lemma 4.1 The number of marked nodes in t is O(7).

Proof. There are only O(-%) marked nodes v with the property that all nodes in either the left
subtree of v or the right subtree of v are unmarked; this is because both these subtrees have at
least 7+ nodes. The number of marked nodes v such that both the left subtree of v and the right
subtree of v contain marked nodes is at most 1 less than the number of marked nodes without
this property. The lemma follows. O

Some Properties of Paths in C.

<h-1

branch node

Link Nodes

Figure 5: Overlap is at most 6§ — 1.

Lemma 4.2 Consider two paths p,p' in C starting at nodes u and u', respectively (see Fig.5).
Suppose u' lies on p. Then only the first @ — 1 edges of p’ can also be present in p.

Proof. From the construction of C, the length of the path between u and v’ is not divisible by
f. The lemma then follows from Lemma 2.1. O

Corollary 4.3 If the first 8 edges are removed from each path in C then the resulting collection
of paths is node disjoint. Hence the truncated paths have total lengths O(n). Also, as the link
node is mnot among the first @ nodes by Property 2 of paths in C, the link node of p' cannot lie
on p.

Corollary 4.4 The green subtrees hanging from the truncated paths are all disjoint.

Proof. It suffices to consider the green subtrees hanging from two paths p, p' € C, starting at
u,u, respectively, where v is a proper ancestor of v’ (for if v and u' are unrelated then clearly
the green trees hanging from p and p’ are disjoint.) By Corollary 4.3, trunc(p) and trunc(p')
are disjoint. For a contradiction, suppose that G is a green subtree hanging from trunc(p) and
containing v, a node in a green subtree hanging from trunc(p’). It follows from Lemma 4.2 that
trunc(p’) lies within G. But trunc(p’) includes the link node I’ of p’ and the subtree of ¢ rooted
at I’ contains at least m/4 nodes. Then G, which contains this subtree, would be red. O

4.4.1 Showing |C|= O(Z).

m

Lemma 4.5 Let p, p’ be as in Lemma 4.2 (see Fig.5). Then p' cannot overlap a node in p which
is a proper descendant of p’s link node w. Therefore, if p overlaps the link node w of p, then it
branches away from p at w.

Proof. By Corollary 4.3, the link node of p' is not on p. If p' overlaps a node w' in p which
is a proper descendant of w, then |t,/| > %, and therefore w cannot be the link node of p, a
contradiction. O

Partitioning C into Disjoint Chains of Paths. We partition the paths in C' into O(Z)
disjoint ordered groups C;, which we call chains. Paths in a chain have the property that each

|
I
/"’
2| A Marked Node
| =
I
I
I
I
!

Link Nodes

Figure 6: A Chain of Three Paths and Two Overlapping Chains.

path p' overlaps the link node of the previous path p in the chain; in addition, among all paths
in C which overlap the link node of p, p’ is the path whose start node is closest to the start
node of p. Each path in C' whose link node is not overlapped by any other path ends its chain.
By Corollary 4.3, the portions below the link nodes in the various paths in C are all disjoint;
therefore, only cores of various chains can overlap each other, where the core of a chain C} is the
path formed by the union of the paths in C;, with portions below the link nodes in each path
discarded (see Fig.6).

Lemma 4.6 Consider two distinct chains C;,C;. Let v be the node furthest from the root of t
which is common to both chains. Then v is a marked node (see Fig.6).

Proof. Since v is in both chains, there in a path p € C; and a path p’ € C; containing v. In
addition, p and p’ separate at v. Without loss of generality, assume that the start node of p is
closer to the root than the start node of p’. By Corollary 4.3, the link node of p’ does not appear
on p. We consider two cases depending upon whether or not p' overlaps the link node of p.

First, suppose p’ doesn’t overlap the link node of p. Then v must be a marked node since
the link nodes of both paths are descendants of v and the paths separate at v.

Next, suppose p’ indeed overlaps the link node w of p. By Lemma 4.5, v = w. Since p’ € C;,
there must be a path p” € C; which begins between the start nodes of p and p’ and which also
overlaps the link node w of p (p” is the path next to p in the chain C;). By Lemma 4.5, p and
P must separate at w = v. Then p” must share a child of v with p’, which contradicts the
definition of v. O

Lemma 4.7 Consider path p in some chain C; and two consecutive paths p', p" in some chain
Cj, where i may or may not equal j, with p # p'. Suppose that the start nodes of p, p', p" appear
in that order along the path from the root to the start node of p". Then p" and p do not have a
vertexr in common.

Proof. Let z and y be respectively, the number of edges that p’ are p have in common, and p”
and p’ have in common. By Corollary 4.3, z < 6 — 1. Let the number of edges on the path from

10

the start node of p' to its link node be z. Recall that p' and p” separate at the link node of p'.
Suppose p” overlaps p. Then, z —y < z < 6 — 1. z — y must be a period of the path from the
root of p’ to its link node (since both p’ and p” are 6-paths). Since this path has length at least
|m1| by Property 2 of paths in C, it has period 6. Therefore, z —y > 60, which is a contradiction.
|

Corollary 4.8 Only the first path in chain C; can possibly overlap some path in a chain Cj;,
where © # j and the start node of C; is an ancestor of the start node of Cj.

Corollary 4.9 Consider a path on a chain; the only paths on its chain it may overlap are its
immediate predecessor and successor.

Lemma 4.10 The number of chains is O(,%).

Proof. We prove that the link nodes of the last paths in the various chains are incomparable,
i.e., no two such nodes have an ancestor-descendant relationship. Then, since each link node v
satisfies |t,| > m/4, the lemma follows.

Suppose two paths, each last in its respective chain, have comparable link nodes. Further,
suppose the link node of the second path is a descendant of the link node of the first path. Then,
by Property 1 of paths in C and the definition of the link node, the start node of the second
path must be an ancestor of the link node of the first path. In this case, the first path could not
be the last in its chain, a contradiction. O

Partitioning C into 3 Sets. We partition C into three sets Cy, C.,C,. C; comprises those
paths which are the first paths in their respective chains. C, comprises the even numbered paths
in each chain and C, comprises odd numbered paths (starting from three) in each chain.

Lemma 4.11 The number of paths in C is O(5).

Proof. By Lemma 4.10, |Cy| = O(5%).

Consider C, next. The analysis for C, is identical. By Corollaries 4.8 and 4.9, the paths in
C. are non-overlapping. We show that the number of paths in C, is O(7:).

The number of paths in C, which have a marked node on them is O(;%) by Lemma 4.1.
Consider a path p in C, which does not have a marked node. Then, except possibly for one
subtree, each subtree of ¢ hanging from p is green. By Property 4 of paths in C, the sum of
the sizes of the green subtrees hanging from p plus the length of p is at least m/2. We charge
O(#) to each of the nodes in the green subtrees and the nodes on p for this path. By Property
1 of paths in C' and the non-overlapping nature of paths in C, none of the nodes in the green
subtrees can be present on any path in C.. Further, the set of green subtrees hanging from
various paths in C, are clearly disjoint. It follows that the total charge to all nodes in ¢ and
therefore, the number of paths in C, is O(;%). O

Corollary 4.12 There are O(n/m) red subtrees over all paths in C.

Proof. If a path has k red subtrees it has £ — 1 marked nodes (namely the parents of each
red tree apart from the bottommost one on the path). As there are O(n/m) marked nodes, by
Lemma 4.1, and O(n/m) paths, by Lemma 4.11, the result follows. O

This leads to the following theorem.

Theorem 4.13 There is a linear time reduction from the Tree Pattern Matching problem to a
collection of instances of the Subset Matching problem, of overall linear size.

11

5 Further Comments

It is not completely clear this construction maps unlabelled trees to the set strings as compactly
as possible, for ancestral information is lost in the reduction. Indeed, an unlabelled n-node tree
can be represented using O(n) bits, whereas a size n set problem in general requires 6(n logn)
bits, and will do so after our reduction. In general, n labels would require #(nlogn) bits, so it
appears the reduction is tight for labelled trees. Thus this raises the question of whether there
are algorithms for unlabelled tree pattern matching that are faster by a 6(logn) factor.

References

1]

2]

A. Aho, J. Hopcroft, J. Ullman. Design and Analysis of Algorithms. Addison-Wesley,
1974.

R. Cole, R, Hariharan. Tree pattern matching and subset matching in randomized
O(nlog®m) time. Proceedings of the 29th ACM Symposium on Theory of Computing,
1997, pp. 66 75.

R. Cole, R, Hariharan, P. Indyk. Tree pattern matching and subset matching in deter-
ministic O(n log® m) time. Proceedings of the 10th ACM-SIAM Symposium on Discrete
Algorithms, 1999, pp. 245-254.

R. Cole, R, Hariharan, P. Indyk. Efficient deterministic and randomized algorithms for
subset matching. Manuscript under preparation.

M. Dubiner, Z. Galil, E. Magen. Faster tree pattern matching. Proceedings of the 31st
IEEE Symposium on Foundations of Computer Science, 1990, pp. 145-150.

M.J. Fisher, M.S. Paterson. String matching and other products. Complexity of Compu-
tation, STAM-AMS proceedings, ed. R.M. Karp, 1974, pp. 113 125.

C.M. Hoffman, M.J. O’Donell. Pattern matching in trees. Journal of the ACM, 1982, pp.
68 95.

P. Indyk. Deterministic superimposed coding with applications to pattern matching. Pro-
ceedings of the 38th IEEE Symposium on Foundations of Computer Science, 1997, pp.
127-136.

S.R. Kosaraju. Efficient tree pattern matching. Proceedings of the 30th IEEE Symposium
on Foundations of Computer Science, 1989, pp. 178-183.

M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, New York, 1994,
pp. 27-31.

12

