
Tree Pattern Mathing to Subset Mathing in Linear Time�Rihard Coley Ramesh HariharanzAbstratThis paper is the �rst of two papers desribing an O (npolylog(m)) time algorithm for theTree Pattern Mathing problem on a pattern of size m and a text of size n. In this paper, weshow an O(n+m) time Turing redution from the Tree Pattern Mathing problem to anotherproblem alled the Subset Mathing problem. The seond paper will give eÆient determinis-ti and randomized algorithms for the Subset Mathing problem. Together, these two paperswill imply an O �n log3m+m� time deterministi algorithm and an O �n log3mlog logm +m� timerandomized algorithm for the Tree Pattern Mathing problem.1 IntrodutionIn the Tree Pattern Mathing problem, the text and the pattern are ordered, binary trees and allourrenes of the pattern in the text are sought. Here, the pattern ours at a partiular textposition if plaing the pattern with root at that text position leads to a situation in whih eahpattern node overlaps some text node. This problem is an important problem and has manyappliations (see [7℄). Atually, in these appliations, the tree need not be binary and the edgesmay be labelled; however, as shown in [5℄, this general problem an be onverted to a problemon binary trees with unlabelled edges but with a blow-up in size proportional to the logarithmof the size of the pattern. In fat, this blow-up an also be avoided in our approah, as we willindiate in our desription.The naive algorithm for Tree Pattern Mathing takes time O(nm), where n is the text sizeand m is the pattern size. Ho�man and O'Donell [7℄ gave another algorithm with the sameworst ase bound. This algorithm deomposes the pattern into strings, eah string representinga root-to-leaf path. It then �nds all ourrenes of eah of these strings in the text tree. The�rst o(nm) algorithm was obtained by Kosaraju [9℄ who �rst notied the onnetion of the TreePattern Mathing problem to the problem of String Mathing with Don't-Cares and the problemof onvolving two strings. Kosaraju's algorithm takes O(nm:75 logm) time. Dubiner, Galil andMagen [5℄ improved Kosaraju's algorithm by disovering and exploiting periodiities in pathsin the pattern. They obtained a bound of O(nm:5 logm). This was the best bound known todate. Dubiner, Galil and Magen also made the observation that the naive algorithm atuallytakes O(nh) time, where h is the height of the pattern.In this paper, we show how to redue the Tree Pattern Mathing problem to the SubsetMathing problem in linear time. The Subset Mathing problem is to �nd all ourrenes of a�This work was supported in part by NSF grants CCR9202900, CCR9503309, CCR9800085. An abstrat ofthis work appeared in the Proeedings of the 29th ACM Symposium on Theory of Computing, 1997.yCourant Institute, New York University, ole�s.nyu.edu.zIndian Institute of Siene, Bangalore, ramesh�sa.iis.ernet.in. This work was done in part while visitingNYU. 1



pattern string p of length m in a text string t of length n, where eah pattern and text loationis a set of haraters drawn from some alphabet. The pattern is said to our at text position iif the set p[j℄ is a subset of the set t[i+ j� 1℄, for all j, 1 � j � m. It is required to �nd all textloations at whih the pattern mathes, i.e., eah pattern set is a subset of the aligned text set(see Fig.1).The redution from Tree Pattern Mathing to Subset Mathing proeeds in two steps.� We show that the general Tree Pattern Mathing problem an be redued to the followingspeial ase, alled Spine Pattern Mathing, by a linear time Turing redution. In Spine PatternMathing, there is a speial path in eah of the pattern and text alled their spines. The spinebegins at the root of its tree, and in addition eah node on the spine has at most one non-spinehild. Spines have additional properties as well, whih will be desribed later. All mathes ofthe pattern in the text are sought with the additional restrition that the spine of the patternmust math a portion of the spine of the text, i.e., nodes on the pattern spine must be alignedwith nodes on the text spine. For intuition, one an think of the spine as being the path ofleft hildren starting at the root (and in fat one an redue the general problem to this ase inlinear time, although we will not do so).The above redution may reate several instanes of the Spine Pattern Mathing problem, butthe sum of the sizes of these instanes will be linear. This redution is ompletely deterministi.It proeeds by using the periodiity struture of paths and by deomposing the text tree intoperiodi paths in a non-trivial manner. Eah path then gives a spine for the Spine PatternMathing problem.� Next, we redue the Spine Pattern Mathing problem to the Subset Mathing problem inlinear time. This is, in fat, readily done. The spine of the text tree gives the text string for theSubset Mathing problem; the subtrees hanging from this spine determine the various text sets.Analogous fats hold for the pattern.The two redutions above imply that that the Tree Pattern Mathing problem an be reduedto several instanes of the Subset Mathing Problem, the sum of the sizes of these instanes beinglinear. Therefore, an algorithm for the Subset Mathing problem yields an algorithm for theTree Pattern Mathing problem with the same time omplexity.Cole and Hariharan [2℄ gave a randomized algorithm for the Subset Mathing problem run-ning in time O �(n+ s) log3m�, where s is the sum of the sizes of all the pattern and text sets.Subsequently, Indyk [8℄ gave a deterministi algorithm for the Subset Mathing problem runningin time O�(n+ s)mq log logmlogm (1+o(1))�. Finally, Cole, Hariharan and Indyk [3℄ gave a determinis-ti algorithm running in time O �(n+ s) log3m� and a randomized algorithm running in timeO�(n+ s) log3mlog logm�. The above algorithms will be desribed in a ompanion paper [4℄. It followsthat there is a deterministi algorithm running in time O(n log3m) and a randomized algorithmrunning in time O�n log3mlog logm� for the Tree Pattern Mathing problem.This paper is organized as follows. Setion 2 gives some required de�nitions. Setion 3desribes the redution of the Spine Pattern Mathing Problem to the Subset Mathing problem.Setion 4 desribes the redution from the Tree Pattern Mathing problem to the Spine PatternMathing problem. 2



a

c
b

a
c

b
c

a

c
b

e
f

e
f

b

a
c

a
c

b

a
c

a
c

b

a
c

a
c

b

match

not   a  match

not   a   match

pt
Figure 1: Example of Subset Mathing.

0 0 1 0 0 1 0 0 1period
Figure 2: A Path and its Assoiated String2 De�nitionsTree Pattern Mathing: We onsider ordered binary trees, i.e., eah internal node has a leftand/or a right hild. The text tree t has n nodes and the pattern tree p has m nodes. Theproblem entails �nding all nodes v in t where p mathes, i.e., when the root of p is aligned withv, eah node in p is aligned with a node in t.Paths, Strings and Periods. Note that paths in trees p and t an be expressed as stringsover a two harater alphabet, one harater signifying a left edge and the other a right edge(see Fig.2: 0 represents a left edge and 1 a right edge). The period of a string s[1 : : : jsj℄ is thesmallest number j > 0 suh that s[i℄ = s[i + j℄, for all i, 1 � i � jsj � j. If no suh j existsthen the period of s is de�ned to be jsj. The period of a path is de�ned to be the period of itsassoiated string. The following lemma is lassial [10℄.Lemma 2.1 If k � jsj � j is suh that the period j of s does not divide k, then the strings[k + 1 : : : k + j℄ di�ers from the string s[1 : : : j℄.3



Spine Pattern Mathing: This is a restrited version of the Tree Pattern Mathing problem.In this problem, the text and the pattern eah have one designated path, alled their spines.The text and pattern spines originate at their respetive roots and are maximal paths havingthe same period, � say (the � needed for Tree Pattern Mathing will be determined later). Infat, both spines when represented as strings will have the form xkx0, where jxj = � and x0 isa pre�x of x (here, the values of k and x0 ould di�er for the pattern spine and the text spinebut x is idential for both spines). All mathes of the pattern in whih the pattern spine fallsompletely on the text spine are sought.From maximality, it follows that both spines terminate at nodes with at most one hild (ahild whih when added to the spine destroys its periodi struture). Sine both spines havethe same period �, it follows that the pattern spine will fall ompletely on the text spine only ifthe root of the pattern is plaed at ertain nodes on the text spine. These nodes will our atinteger multiples of � from the text root and will be designated \anhor nodes". Anhor nodeswill have further restritions whih will be desribed later.3 Reduing Spine Pattern Mathing to Subset MathingThe spines of the pattern p and the text t will de�ne the strings for the Subset Mathing problem.The subsets at eah loation in these strings will orrespond to the o�-spine subtrees of the spinenodes; an o�-spine subtree is a subtree whose root is a non-spine node but the parent of whoseroot is on the spine. These subsets are obtained by labelling the nodes of the o�-spine subtreesas follows (see Fig.3). The key fat about this labelling is that two nodes in two distint o�-spinesubtrees (both of whih ould be in the pattern or in the text, or alternatively, one ould be inthe pattern and the other in the text) get the same label if and only if the paths from thesenodes to the roots of their respetive o�-spine subtrees represent idential strings.The o�-spine subtrees of p are labelled �rst. The subtrees are overlaid to form a ombinedpattern subtree; the overlaying aligns the roots of the o�-spine subtrees and reursively overlaystheir subtrees. Then the ombined pattern subtree is traversed by any onvenient method, e.g.a breadth �rst traversal, and the nodes are labelled by the assoiated numbering. For eah spinenode, we form a subset onsisting of the olletion of numbers labelling the nodes of its o�-spinesubtree. This olletion of subsets de�nes the pattern for the Subset Mathing problem instane.The o�-spine subtrees of t are labelled using the same labelling. To do this, eah o�-spine textsubtree and the ombined pattern subtree are traversed in lok-step1. We state the followingeasy fat about the time omplexity of the above omputation.Fat 1 The labels to nodes in o�-spine subtrees of the pattern an be given in O(m) time. Thelabels to any one o�-spine subtree t0 in the text an be given in time O(minfjt0j;mg). The totaltime taken for the labelling is thus O(n + m); onsequently, the size of the resulting SubsetMathing problem is also O(n+m).Clearly, eah math in the instane of the Subset Mathing Problem beginning at a loationorresponding to an anhor node has a orresponding math in the instane of the Spine PatternMathing problem and onversely. This ompletes the redution from Spine Pattern Mathingto Subset Mathing.1Reall our remark from the introdution that the ase of larger degree and labelled trees an be handledwithout any extra overhead. Larger degree is simply handled by the usual binarization. Labelled trees arehandled by pairing the given labels with the labels obtained here.4
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Figure 3: The Spine and its Assoiated Set String.
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4 Reduing Tree Pattern Mathing to Spine Pattern MathingFirst, we identify a partiular path � as the spine of p. Let � have period �. Next, we deomposet into maximal paths with period �; as we will show, there are O � nm� suh paths of total lengthO(n). We obtain a tree for eah suh path in a manner to be desribed. The sum of the sizesof these trees will also be O(n). Solving the Spine Pattern Mathing problem for p and eah ofthe trees obtained from t will suÆe to determine all ourrenes of p in t.De�nitions. The size of a node v in a tree is de�ned to be the number of nodes in the subtreerooted at v. Let tv denote the subtree of t rooted at a node v in t and let pv denote the subtreeof p rooted at a node v in p.4.1 Proessing the PatternThe Spine of the Pattern. We de�ne the spine � of the pattern p to be the following pathfrom the root to a node with at most one hild. � onsists of two segments, �1 and �2. �1 is aentroid path, i.e., it is obtained by moving to the hild with larger size at eah step, with tiesbroken arbitrarily. �1 ends when a node x suh that jpxj � m2 is reahed. Note that jpxj � m4 .Let � be the period of �1. �2 is the longest path starting at x suh that the path � ontinues tohave period �. Note that �2 has a vertex in ommon with �1.4.2 Deomposing the TextDe�nitions. A path in t from a node u to a node v in tu is a �-path if it has period � andis idential to the spine of the pattern in the �rst � loations (when both paths are viewed asstrings). This path is maximal if extending it to the distane � anestor of u or either hild ofv results in a path whih is not a �-path (in fat, v an have only one hild). The link node l inthis path is the node losest to v suh that jtlj � m4 . The anhor nodes w on this path satisfythe following properties. These properties will be justi�ed shortly.1. tw has at least m nodes.2. The distane from w to l is at least j�1j, and thus has length at least �.3. The distane from w to v is at least j�j.4. Consider the subtrees hanging from the maximal �-path starting at w. Classify them asred subtrees if they have at least m4 nodes and as green subtrees otherwise. If all thesesubtrees exept exatly one are green, then the green subtrees plus the path together haveat least m=2 nodes.5. The distane from u to w is an integer multiple of �.We form a olletion C of maximal �-paths in t. This olletion omprises all the paths whosestart nodes (whih are anhor nodes) satisfy properties 1{4 above.Note that these paths need not be disjoint; however their ombined length will still be O(n)as we shall show later, in Lemma 4.11 and Corollary 4.3. The algorithm for onstruting thesepaths is given next. 6
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Figure 4: A �-Path in C.The Path Deomposition Algorithm. The deomposition is obtained using the followingalgorithm. For eah node x in T , this algorithm �rst determines the longest �-path whih beginsat x. This is done in O(n) time using a Knuth-Morris-Pratt type automaton in onjuntion witha depth-�rst traversal of t as in the algorithm of Ho�man and O'Donell [7℄. Next, the algorithmdetermines those maximal �-paths found above whih satisfy Properties 1{4, disarding all otherpaths. In fat, this �ltering an easily be done diretly on the y when the paths are beingdetermined in O(n) time. The details are left to the reader. Finally, the algorithm traverses thepaths in C and determines anhor nodes satisfying the required properties. Sine, as we willsee, the sum of the length of paths in C is O(n), the total time taken above is O(n).Signi�ane of Anhor Nodes on �-Paths. Note that eah node w is an anhor node onsome path in C exept in the following four situations. In eah of these situations, the patternannot math at w.1. jtwj < m.2. The longest �-path in tw starting at w and ending at some node w0 with the property thatjtw0 j � m4 is shorter than �1.3. The longest �-path in tw starting at w is shorter than �.4. The maximal �-path in tw starting at w satis�es the following: the subtrees hanging fromthe path are all green with exatly one exeption, and the sum of the sizes of these greensubtrees and the length of the path itself is less than m=2. The pattern annot math atw if this ondition holds. This an be seen as follows. For the pattern to math at w,there must be at most one subtree hanging from � in p whih an be red. By the entroidnature of �1 and the stopping ondition for �1, this subtree an have size at most m=2.Therefore, � and all other subtrees hanging from it together have size at least m=2.Thus determining mathes of p at anhor nodes on paths in C suÆes to determine all mathesof p in t. Further, note that when p is plaed with its root at an anhor node on some path inC, the spine of p lies ompletely on that path. 7



4.3 Proessing Paths in C.The purpose of proessing a path � 2 C is to determine whether or not p mathes at w, for eahanhor node w on �. Eah path � in C will be proessed as follows.Let u be the node at whih � starts. u itself is an anhor node. Whether or not the patternmathes at u is determined in a brute fore manner. This requires O(m) time. We will show inLemma 4.11 that there are O(n=m) paths and hene the total time taken over all paths in thisproess is just O(n).Mathes at other anhor nodes on � are determined di�erently, i.e., by redution to aninstane of the Spine Pattern Mathing problem.Consider the portion of � starting from the seond anhor node onwards, denoted trun(�).trun(�) provides the spine of the text instane. Clearly, there is a math of p rooted at ananhor node on trun(�), if and only if there is a math at the same loation in the orrespondingSpine Pattern Mathing problem instane.Let s1; : : : ; sj�j�� denote the o�-spine subtrees, if any, for trun(�), in inreasing order ofdistane from the start node of �. Some of the si's might not exist. By Fat 1, reduing thisinstane of the Spine Pattern Mathing problem to the Subset Mathing problem takes timeO(Pj�j��i=1 minfjsij;mg+ j�j � �) (plus, of ourse, O(m) time for proessing the pattern, whih isommon to all the instanes of the Spine Pattern Mathing problem whih result above).The total time taken to proess � is thus O(m+Pj�j��i=1 minfjsij;mg+ j�j� �). This quantityan be split into 4 parts: O(m) time for heking for an ourrene of p at the �rst anhor node,time proportional to its size for eah green subtree hanging from trun(�), O(m) time for eahred subtree hanging from trun(�), and O(j�j � �) time for the path itself. We need to showthat this sums to O(n) over all paths �. By Lemma 4.11, there are O(n=m) paths; hene the�rst part sums to O(n) time. By Corollary 4.4, the green subtrees in the trunated paths aredisjoint; hene the seond part sums to O(n). By Corollary 4.12, there are O(n=m) red subtrees,hene the third part sums to O(n). Finally, by Corollary 4.3, the trunated path lengths sumto O(n), and hene the fourth part sums to O(n) also. This yields O(n) time overall.4.4 Showing O(n) TimeEventually, we will seek to bound the number of red subtrees over all paths in C. We will dothis by identifying a set of O(n=m) nodes of t, alled marked nodes. Eah red subtree will beassigned to either a marked node or a path in C, and eah marked node and eah path willreeive at most a onstant number of red subtrees. We will also show in Setion 4.4.1 that thereare O(n=m) paths in C; it then follows that there are O(n=m) red subtrees.Marked Text Nodes. We mark the following nodes in t: those nodes whose left and rightsubtrees both ontain at least m4 nodes.Lemma 4.1 The number of marked nodes in t is O( nm ).Proof. There are only O( nm) marked nodes v with the property that all nodes in either the leftsubtree of v or the right subtree of v are unmarked; this is beause both these subtrees have atleast m4 nodes. The number of marked nodes v suh that both the left subtree of v and the rightsubtree of v ontain marked nodes is at most 1 less than the number of marked nodes withoutthis property. The lemma follows. 2Some Properties of Paths in C. 8



�0Link Nodes�
u0ubranh node� � � 1 wFigure 5: Overlap is at most � � 1.Lemma 4.2 Consider two paths �; �0 in C starting at nodes u and u0, respetively (see Fig.5).Suppose u0 lies on �. Then only the �rst � � 1 edges of �0 an also be present in �.Proof. From the onstrution of C, the length of the path between u and u0 is not divisible by�. The lemma then follows from Lemma 2.1. 2Corollary 4.3 If the �rst � edges are removed from eah path in C then the resulting olletionof paths is node disjoint. Hene the trunated paths have total lengths O(n). Also, as the linknode is not among the �rst � nodes by Property 2 of paths in C, the link node of �0 annot lieon �.Corollary 4.4 The green subtrees hanging from the trunated paths are all disjoint.Proof. It suÆes to onsider the green subtrees hanging from two paths �, �0 2 C, starting atu; u0, respetively, where u is a proper anestor of u0 (for if u and u0 are unrelated then learlythe green trees hanging from � and �0 are disjoint.) By Corollary 4.3, trun(�) and trun(�0)are disjoint. For a ontradition, suppose that G is a green subtree hanging from trun(�) andontaining v, a node in a green subtree hanging from trun(�0). It follows from Lemma 4.2 thattrun(�0) lies within G. But trun(�0) inludes the link node l0 of �0 and the subtree of t rootedat l0 ontains at least m=4 nodes. Then G, whih ontains this subtree, would be red. 24.4.1 Showing jCj = O( nm).Lemma 4.5 Let �; �0 be as in Lemma 4.2 (see Fig.5). Then �0 annot overlap a node in � whihis a proper desendant of �'s link node w. Therefore, if �0 overlaps the link node w of �, then itbranhes away from � at w.Proof. By Corollary 4.3, the link node of �0 is not on �. If �0 overlaps a node w0 in � whihis a proper desendant of w, then jtw0 j � m4 , and therefore w annot be the link node of �, aontradition. 2Partitioning C into Disjoint Chains of Paths. We partition the paths in C into O( nm)disjoint ordered groups Ci, whih we all hains. Paths in a hain have the property that eah9



Link Nodes A Marked Node
Ci Cj

Figure 6: A Chain of Three Paths and Two Overlapping Chains.path �0 overlaps the link node of the previous path � in the hain; in addition, among all pathsin C whih overlap the link node of �, �0 is the path whose start node is losest to the startnode of �. Eah path in C whose link node is not overlapped by any other path ends its hain.By Corollary 4.3, the portions below the link nodes in the various paths in C are all disjoint;therefore, only ores of various hains an overlap eah other, where the ore of a hain Ci is thepath formed by the union of the paths in Ci, with portions below the link nodes in eah pathdisarded (see Fig.6).Lemma 4.6 Consider two distint hains Ci; Cj. Let v be the node furthest from the root of twhih is ommon to both hains. Then v is a marked node (see Fig.6).Proof. Sine v is in both hains, there in a path � 2 Ci and a path �0 2 Cj ontaining v. Inaddition, � and �0 separate at v. Without loss of generality, assume that the start node of � isloser to the root than the start node of �0. By Corollary 4.3, the link node of �0 does not appearon �. We onsider two ases depending upon whether or not �0 overlaps the link node of �.First, suppose �0 doesn't overlap the link node of �. Then v must be a marked node sinethe link nodes of both paths are desendants of v and the paths separate at v.Next, suppose �0 indeed overlaps the link node w of �. By Lemma 4.5, v = w. Sine �0 62 Ci,there must be a path �00 2 Ci whih begins between the start nodes of � and �0 and whih alsooverlaps the link node w of � (�00 is the path next to � in the hain Ci). By Lemma 4.5, � and�00 must separate at w = v. Then �00 must share a hild of v with �0, whih ontradits thede�nition of v. 2Lemma 4.7 Consider path � in some hain Ci and two onseutive paths �0; �00 in some hainCj, where i may or may not equal j, with � 6= �0. Suppose that the start nodes of �; �0; �00 appearin that order along the path from the root to the start node of �00. Then �00 and � do not have avertex in ommon.Proof. Let x and y be respetively, the number of edges that �0 are � have in ommon, and �00and �0 have in ommon. By Corollary 4.3, x � �� 1. Let the number of edges on the path from10



the start node of �0 to its link node be z. Reall that �0 and �00 separate at the link node of �0.Suppose �00 overlaps �. Then, z � y � x � � � 1. z � y must be a period of the path from theroot of �0 to its link node (sine both �0 and �00 are �-paths). Sine this path has length at leastj�1j by Property 2 of paths in C, it has period �. Therefore, z� y � �, whih is a ontradition.2Corollary 4.8 Only the �rst path in hain Cj an possibly overlap some path in a hain Ci,where i 6= j and the start node of Ci is an anestor of the start node of Cj.Corollary 4.9 Consider a path on a hain; the only paths on its hain it may overlap are itsimmediate predeessor and suessor.Lemma 4.10 The number of hains is O( nm).Proof. We prove that the link nodes of the last paths in the various hains are inomparable,i.e., no two suh nodes have an anestor-desendant relationship. Then, sine eah link node vsatis�es jtvj � m=4, the lemma follows.Suppose two paths, eah last in its respetive hain, have omparable link nodes. Further,suppose the link node of the seond path is a desendant of the link node of the �rst path. Then,by Property 1 of paths in C and the de�nition of the link node, the start node of the seondpath must be an anestor of the link node of the �rst path. In this ase, the �rst path ould notbe the last in its hain, a ontradition. 2Partitioning C into 3 Sets. We partition C into three sets Cf ; Ce; Co. Cf omprises thosepaths whih are the �rst paths in their respetive hains. Ce omprises the even numbered pathsin eah hain and Co omprises odd numbered paths (starting from three) in eah hain.Lemma 4.11 The number of paths in C is O( nm).Proof. By Lemma 4.10, jCf j = O( nm).Consider Ce next. The analysis for Co is idential. By Corollaries 4.8 and 4.9, the paths inCe are non-overlapping. We show that the number of paths in Ce is O( nm ).The number of paths in Ce whih have a marked node on them is O( nm) by Lemma 4.1.Consider a path � in Ce whih does not have a marked node. Then, exept possibly for onesubtree, eah subtree of t hanging from � is green. By Property 4 of paths in C, the sum ofthe sizes of the green subtrees hanging from � plus the length of � is at least m=2. We hargeO( 1m ) to eah of the nodes in the green subtrees and the nodes on � for this path. By Property1 of paths in C and the non-overlapping nature of paths in Ce, none of the nodes in the greensubtrees an be present on any path in Ce. Further, the set of green subtrees hanging fromvarious paths in Ce are learly disjoint. It follows that the total harge to all nodes in t andtherefore, the number of paths in Ce, is O( nm ). 2Corollary 4.12 There are O(n=m) red subtrees over all paths in C.Proof. If a path has k red subtrees it has k � 1 marked nodes (namely the parents of eahred tree apart from the bottommost one on the path). As there are O(n=m) marked nodes, byLemma 4.1, and O(n=m) paths, by Lemma 4.11, the result follows. 2This leads to the following theorem.Theorem 4.13 There is a linear time redution from the Tree Pattern Mathing problem to aolletion of instanes of the Subset Mathing problem, of overall linear size.11
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