Polynomial Factoring

Ramesh Hariharan

The Problem

- Factoring Polynomials overs Integers
- Factorization is unique (why?)
- $(x^2 + 5x + 6) \rightarrow (x+2)(x+3)$
- Time: Polynomial in degree

A Related Problem

- Factoring Integers
- $6 \rightarrow 2 \times 3$

Time: No algorithm polynomial in log n is known

If the polynomial is not monic (highest deg coeff=1) then polynomial factorization subsumes integer factorization; so assume that the polynomial is monic

Another Related Problem

- Factoring Polynomials mod prime p
- Factorization is unique (why?)
- $(x^2 + 1) \rightarrow (x+2)(x+3) \mod 5$

Time: Polynomial in degree

Yet Another Related Problem

- Factoring Polynomials in number fields
- Factorization is not unique (why?)
- In Q(sqrt(5))
 - 4 = 2.2
 - 4= [3-sqrt(5)] x [3+sqrt(5)]

Factoring Polynomials

- To factor P(x)
 - Find F(x) such that
 - F(x) has known factorization
 - P(x) divides F(x) but not any of its factors
- GCD of P(x) and one of the irreducible factors of F(x) gives a factor of P(x) in polynomial time
- If P(x) is irreducible then no such F(x) can exist

Berlekamp's Algorithm

- The required F(x) can be found in polynomial time!!
- Key Idea:
 - $x^p x = x (x-1) (x-2) ... (x-p+1) \mod p$
 - $f(x)^p f(x) = f(x) (f(x)-1) (f(x)-2) ... (f(x)-p+1) \mod p$
 - So F(x)=f(x)^p f(x) has known factorization mod p by Fermat's theorem

Berlekamp's Algorithm

Find f(x) such that

- P(x) divides $f(x)^p f(x)$
 - hard
- P(x) does not divide f(x) i for all i in 0.. p-1
 - easy, keep degree of f(x) smaller than that of P(x)

Berlekamp's Algorithm

Find f(x) such that

- n = deg(P(x)) > deg(f(x))
- $f(x)^p f(x) \mod P(x)$ is 0

Berlekamp's Algorithm: Now comes the trick

- $f(x) = a + bx + cx^2 \dots$
- $f(x)^p = a + bx^p + c x^{2p} \dots$, i.e., no cross terms
- $f(x)^p-f(x) = a + bx^p + c x^2p \dots a + bx + cx^2 \dots$, i.e. degree (n-1)p
- $f(x)^p f(x) \mod P(x) = a [1 \mod P(x)] + b [x^p \mod P(x)] + c [x^2p \mod P(x)] \dots a + b x + c x^2 \dots$
- f(x)^p f(x) mod P(x) can be represented by a known n-1xn-1 matrix Q-I multiplying the unknown vector v=[a,b,c...], we solve vQ=0 for v;

Matrix Formulation

Berlekamp's Algorithm: Timing Analysis

- Find Q: n remainder calculations, each poly in n and log p
- Solving v(Q-I) takes poly in n
- Computing gcd of P(x) with each of f(x)-i takes p X poly in n can be tweaked to log p * poly in n
- This gives at least one factor, now recurse.
- So time is poly in n and p, improvable to log p

Given the factorization of $P(x) \mod p$, can we compute the factorization mod p^2

To begin with we have

- $P(x) = A(x) B(x) \mod p$
- A,B are relatively prime mod p
- A,B are monic and therefore deg(P)=deg(A)+deg(B)

Let $P(x) = A(x)B(x) + p e(x) \mod p^2$, where deg(e)<deg(P)

Find A',B' such that

 $P(x) = (A(x) + pA'(x)) (B(x) + pB'(x)) \mod p^2$ = A(x)B(x) + p (A(x)B'(x)+A'(x)B(x)) mod p^2 = P(x) + p (A(x)B'(x)+A'(x)B(x) - e(x)) mod p^2

We want

 $A(x)B'(x) + B(x)A'(x) = e(x) \mod p$

To find A',B' such that $A(x)B'(x) + B(x)A'(x) = e(x) \mod p$

- Since A,B are rel. prime mod p, there exists s<B,t<A such that A(x)s(x)+B(x)t(x)=1 (mod p)
- Set $B'(x)=e(x)s(x) \mod p$, $A'(x)=e(x)t(x) \mod p!!$
- Problem: B+pB' and A+pA' need not be monic
- Fix: Make deg(B')<deg(B)</p>
 P'(x) = remainder r(x) of o(x)

 $\begin{aligned} B'(x) &= \text{remainder } r(x) \text{ of } e(x)s(x) \text{ wrt } B(x) \text{ mod } p, \\ e(x)s(x) &= q(x)B(x) + r(x) \text{ mod } p \\ A'(x) &= e(x)t(x) + A(x)q(x) \text{ mod } p \end{aligned}$

We also need A + pA', B + pB' to be relatively prime mod p^2 to continue this process

We want s'<B, t'<A such that

• $(s+ps') (A + pA') + (t+pt') (B + pB') = 1 \mod p^2$

Let $As+Bt=1+p f \mod p^2$, we want

- $\bullet \quad 1+ pf + s' pA + t' pB + spA' + tpB' = 1 \mod p^2$
- $f + s'A + t'B + sA' + tB' = 0 \mod p$
- $s'A + t'B = f' \mod p$ where f' = -(f+sA'+tB')

Set $s' = sf' \mod p$, $t'=tf' \mod p$

 Same problem as before so set s' to remainder of sj wrt B' mod p and adjust t' accordingly

Hensel Lifting

- Given A,B, finding s,t using GCD computation is polynomial in n and log p
- Finding A',B' requires finding remainders wrt polynomials of degree n modulo p, so polynomial in n and log p
- Finding s',t is similar
- In general
 - A factorization of P(x)=A(x)B(x) mod p with A,B relatively prime can be lifted to a factorization P(x)=A'(x)B'(x) mod p^k with A',B' rel. prime in time poly in n, k, log p

Factoring Polynomials on Integers

The Algorithm

- Find $P(x)=A(x)B(x) \mod p$ for some prime $p \sim n$
- Use Hensel lifting to lift so we have P(x) = A(x)B(x) mod p^k for some large enough k
- Then what? Somehow need to keep coefficients small to avoid wraparound. Needs another new idea.

Given a set of vectors

the lattice generated by these vectors is the set of all integer linear combinations of these vectors

Polynomials and Lattices

The set of all polynomials of degree at most 2m divisible by polynomial f(x) = sum a_i x^i, deg(f) < m can be represented as a lattice.

- n rows of this matrix generate the lattice in 2m dimensions.
- Multiplying by a row vector of length m (i.e., a polynomial of degree at most m) gives an element of the lattice, i.e., polynomial divisible by f and with degree at most 2m.

	ZM										
	a_0	a_1	a_2		a_m	0		0			
	0	a_0	a_1		a_{m-1}	a_m		0			
III			۰.								
	0	0						$.a_m$			

The Resultant

Given a(x) of degree m and b(x) of degree n, how does one capture all polynomials which are obtained by taking s(x)a(x) + t(x)b(x), deg(s)<deg(b), deg(t)<deg(a)

- m+n * m+n matrix, premultiply with [s0 s1...sn t0 t1...tm]
- The determinant of this matrix is the resultant(a,b)

$$\begin{bmatrix} a_0 & a_1 & a_2 & \dots & a_m & 0 & \dots & 0 \\ 0 & a_0 & a_1 & \dots & a_{m-1} & a_m & \dots & 0 \\ & & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & \ddots \\ b_0 & b_1 & b_2 & \dots & b_n & 0 & \dots & 0 \\ 0 & b_0 & b_1 & \dots & b_{n-1} & b_n & \dots & 0 \\ & & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \end{bmatrix}$$

A Key Property

Given a(x) of degree m and b(x) of degree n, if a(x) and b(x) are relatively prime then

- there exist s,t such that sa+tb = Resultant(a,b) != 0 (why not 1? We're working on integers)
- Resultant < |a|^n |b|^m</p>

$ a_0 $	a_1	a_2	 a_m	0	 0
0	a_0	a_1	 a_{m-1}	a_m	 0
		·			.
0	0				$.a_m$
b_0	b_1	b_2	 b_n	0	 0
0	b_0	b_1	 b_{n-1}	b_n	 0
		۰.			
0	0				$.b_m$

Back to Factorization

Start with P(x) of degree n.

We have found monic, non-constant A(x) of degree <n which divides $P(x) \mod p^k$

- Suppose we find a "short" polynomial B(x) of degree m<n in the lattice generated by A(x) mod p^k (so A divides B mod p^k)
- Short means that Resultant(P,B)<|P|^m |B|^n < p^k</p>
- Then P,B must have a common non-trivial factor
 - if not then there exist s,t such that sP+tB=Resultant(P,B) !=0
 - Then sP+tB=Resultant(P,B) mod p^k
 - A divides Resultant(P,B) mod p^k
 - Resultant(P,B)=0 mod p^k
 - Resultant(P,B)=0
 - Contradiction
- GCD(P,B) gives a factor of P

How Short Must B be

Short means that $\operatorname{Resultant}(P,B) < |P|^m |B|^n < p^k$

- Suppose the entries in P are at most 2ⁿ, then |P|ⁿ = 2^(n²), we can choose p^k to be larger than this, time is poly in k and log p, so still ok.
- The problem is |B|^n; entries in B can be as big as p^k.
- We need to keep the entries in B smaller than p^{{k/n}. Indeed, |B| can be kept down to |P| 2ⁿ, so |B|ⁿ becomes independent of p^k.
- Finding short vectors in lattices in polynomial time requires the LLL algorithm (another talk).

Thank You