Fast Algorithms for Connectivity Problems in Networks
Steiner Cuts, Gomory-Hu Trees, and Edge Splitting

Ramesh Hariharan
Strand Life Sciences

29 May 2008/ MCDES
The Setting

- A network G of n nodes and m edges.
 - Many nodes, relatively fewer connections.
 - Unweighted edges.
 - Redundancy requirement (k) much smaller than n.
 - Reduce algorithms with time complexity $O(n^2)$ or more to $\tilde{O}(n \text{ poly}(k))$
The Setting

- A network G of n nodes and m edges.
- Many nodes, relatively fewer connections.
 - Unweighted edges.
 - Redundancy requirement (k) much smaller than n.
- Reduce algorithms with time complexity $O(n^2)$ or more to $	ilde{O}(n \text{ poly}(k))$
The Setting

- A network G of n nodes and m edges.
- Many nodes, relatively fewer connections.
- Unweighted edges.
 - Redundancy requirement (k) much smaller than n.
 - Reduce algorithms with time complexity $O(n^2)$ or more to $\tilde{O}(n \text{ poly}(k))$
The Setting

- A network G of n nodes and m edges.
- Many nodes, relatively fewer connections.
- Unweighted edges.
- Redundancy requirement (k) much smaller than n.
- Reduce algorithms with time complexity $O(n^2)$ or more to $\tilde{O}(n \text{ poly}(k))$
The Setting

- A network G of n nodes and m edges.
- Many nodes, relatively fewer connections.
- Unweighted edges.
- Redundancy requirement (k) much smaller than n.
- Reduce algorithms with time complexity $O(n^2)$ or more to $\tilde{O}(n \text{ poly}(k))$
The maximum number of edge disjoint paths between two vertices.

Equals the min-cut separating the 2 vertices.

Can be computed in $O(mk)$ time via Ford-Fulkerson max flows, k is the min-cut size.
The maximum number of edge disjoint paths between two vertices.

Equals the min-cut separating the 2 vertices

Can be computed in $O(mk)$ time via Ford-Fulkerson max flows, k is the min-cut size
The maximum number of edge disjoint paths between two vertices.

Equals the min-cut separating the 2 vertices

Can be computed in $O(mk)$ time via Ford-Fulkerson max flows, k is the min-cut size
Global Edge Connectivity/Min-Cut

- The minimum edge connectivity over all vertex pairs.
- A global min-cut
- Best Deterministic Algorithm: $O(mk)$ by Gabow where k is the global min-cut size; near linear Monte Carlo algorithm by Karger.
Global Edge Connectivity/Min-Cut

- The minimum edge connectivity over all vertex pairs.
- A global min-cut
 - Best Deterministic Algorithm: $O(mk)$ by Gabow where k is the global min-cut size; near linear Monte Carlo algorithm by Karger.
Global Edge Connectivity/Min-Cut

- The minimum edge connectivity over all vertex pairs.
- A global min-cut
- Best Deterministic Algorithm: $O(mk)$ by Gabow where k is the global min-cut size; near linear Monte Carlo algorithm by Karger.
Steiner Edge Connectivity/Min-Cut

- S is a subset of interesting Steiner vertices.
- The minimum edge connectivity over all vertex pairs from S.
- The min-cut separating vertices in S.
- Question: Is an $O(mk)$ algorithm possible, where k is the Steiner min-cut?
Steiner Edge Connectivity/Min-Cut

- S is a subset of interesting Steiner vertices.
- The minimum edge connectivity over all vertex pairs from S.
- The min-cut separating vertices in S

Question: Is an $O(mk)$ algorithm possible, where k is the Steiner min-cut?
Steiner Edge Connectivity/Min-Cut

- S is a subset of interesting Steiner vertices.
- The minimum edge connectivity over all vertex pairs from S.
- The min-cut separating vertices in S.
- Question: Is an $O(mk)$ algorithm possible, where k is the Steiner min-cut?
The Gomory-Hu Tree

- A tree which carries min-cut information for all pairs of vertices.
- \(n - 1 \) max-flow/min-cut computations suffice.
- Time taken is \(O(n^3) \) or more.
- Question: Is \(\tilde{O}(nm) \) time possible?
The Gomory-Hu Tree

- A tree which carries min-cut information for all pairs of vertices.
- $n - 1$ max-flow/min-cut computations suffice.
- Time taken is $O(n^3)$ or more.
- Question: Is $\tilde{O}(nm)$ time possible?
The Gomory-Hu Tree

- A tree which carries min-cut information for all pairs of vertices.
- \(n - 1 \) max-flow/min-cut computations suffice.
- Time taken is \(O(n^3) \) or more.

Question: Is \(\tilde{O}(nm) \) time possible?
The Gomory-Hu Tree

- A tree which carries min-cut information for all pairs of vertices.
- $n - 1$ max-flow/min-cut computations suffice.
- Time taken is $O(n^3)$ or more.
- Question: Is $\tilde{O}(nm)$ time possible?
Gomory-Hu Trees & Steiner Min-Cuts

- Compute Min-Cut (say Global)
- Create two recursive sub-problems
 - General Recursive Problem; Steiner Min-Cut
Gomory-Hu Trees & Steiner Min-Cuts

- Compute Min-Cut (say Global)
- Create two recursive sub-problems
- General Recursive Problem; Steiner Min-Cut
Edge Splitting

- Pair edges incident on a vertex and remove it
- Ensure that pairing conserves the global min-cut of the remaining vertices
- Is this possible at all?
- Lovasz/Mader: Yes, for eulerian directed graphs and for even degree vertices in undirected graphs
Edge Splitting

- Pair edges incident on a vertex and remove it
 - Ensure that pairing conserves the global min-cut of the remaining vertices
- Is this possible at all?
- Lovasz/Mader: Yes, for eulerian directed graphs and for even degree vertices in undirected graphs
Edge Splitting

- Pair edges incident on a vertex and remove it
- Ensure that pairing conserves the global min-cut of the remaining vertices

- Is this possible at all?
- Lovasz/Mader: Yes, for eulerian directed graphs and for even degree vertices in undirected graphs
Edge Splitting

- Pair edges incident on a vertex and remove it
- Ensure that pairing conserves the global min-cut of the remaining vertices
- Is this possible at all?
- Lovasz/Mader: Yes, for eulerian directed graphs and for even degree vertices in undirected graphs
Edge Splitting

- Pair edges incident on a vertex and remove it
- Ensure that pairing conserves the global min-cut of the remaining vertices
- Is this possible at all?
- Lovasz/Mader: Yes, for eulerian directed graphs and for even degree vertices in undirected graphs
Edge Splitting and Steiner Min-Cuts

- Split off all non-Steiner vertices
- Compute global min-cut for what remains in $\tilde{O}(mk)$ time.
Edge Splitting and Steiner Min-Cuts

- Split off all non-Steiner vertices
- Compute global min-cut for what remains in $\tilde{O}(mk)$ time.
Edge Splitting Complexity

- How fast can one vertex be split off? $O(n^2)$ time Karger, Benczur and $\tilde{O}(nk^2)$ time Gabow
- How fast can many vertices be split off? Nothing better than plain multiplication known.
- Is $\tilde{O}(n \text{ poly}k)$ possible?
Edge Splitting Complexity

- How fast can one vertex be split off? $O(n^2)$ time Karger, Benczur and $\tilde{O}(nk^2)$ time Gabow

- How fast can many vertices be split off? Nothing better than plain multiplication known.

- Is $\tilde{O}(n \text{ poly} k)$ possible?
Edge Splitting Complexity

- How fast can one vertex be split off? $O(n^2)$ time Karger, Benczur and $\tilde{O}(nk^2)$ time Gabow
- How fast can many vertices be split off? Nothing better than plain multiplication known.
- Is $\tilde{O}(n \text{ poly}k)$ possible?
Certifying $s - t$ and global min-cuts

- How can one certify a min-cut?
 - $s - t$ min-cut by finding edge-disjoint paths.
 - Global min-cut by Edmonds’ Arborescences
Certifying $s - t$ and global min-cuts

- How can one certify a min-cut?
- $s - t$ min-cut by finding edge-disjoint paths.
- Global min-cut by Edmonds’ Arborescences
Certifying $s - t$ and global min-cuts

- How can one certify a min-cut?
- $s - t$ min-cut by finding edge-disjoint paths.
- Global min-cut by Edmonds’ Arborescences
Edmonds’ Arborescences

- Direct an undirected graph by orienting each edge in both directions.

- Arborescence: A spanning tree with edges directed away from an arbitrary root

 - Build as many edge-disjoint arborescences as possible rooted at some chosen vertex r

 - $\tilde{O}(n^2)$ time construction by Gabow.
Edmonds’ Arborescences

- Direct an undirected graph by orienting each edge in both directions.
- Arborescence: A spanning tree with edges directed away from an arbitrary root.
- Build as many edge-disjoint arborescences as possible rooted at some chosen vertex r

$\tilde{O}(n^2)$ time construction by Gabow.
Edmonds’ Arborescences

- Direct an undirected graph by orienting each edge in both directions.
- Arborescence: A spanning tree with edges directed away from an arbitrary root.
- Build as many edge-disjoint arborescences as possible rooted at some chosen vertex r.
- $\tilde{O}(n^2)$ time construction by Gabow.
Global Min-Cut Characterizations from Edmonds’ Arborescences

- Any subset of vertices not containing the root must have in-degree at least 1 in each tree.
- Existence of k edge-disjoint arborescences implies global min-cut $\geq k$
Global Min-Cut Characterizations from Edmonds’ Arborescences

- Any subset of vertices not containing the root must have in-degree at least 1 in each tree.
- Existence of k edge-disjoint arborescences implies global min-cut $\geq k$
Global Min-Cut Characterizations from Edmonds’ Arborescences

- A subset S of vertices s.t. $r \not\in S$, S is contiguous in all trees, and all unused edges directed into S have both endpoints in S, is a global min-cut.

- Gabow’s construction shows that such a set exists when no more edge-disjoint arborescences can be constructed.
Global Min-Cut Characterizations from Edmonds’ Arborescences

- A subset S of vertices s.t. $r \not\in S$, S is contiguous in all trees, and all unused edges directed into S have both endpoints in S, is a global min-cut.

- Gabow’s construction shows that such a set exists when no more edge-disjoint arborescences can be constructed.
Edmonds’ Directionless Trees

- Swaps need to be constrained to maintain the arborescence property.
 - Relax the property that edges are directed away from the root. Instead insist that in-degree of a vertex over all directionless trees equals k.
 - Existence of k edge-disjoint directionless trees implies global min-cut $\geq k$.
 - $\tilde{O}(mk)$ time construction by Gabow.
Edmonds’ Directionless Trees

- Swaps need to be constrained to maintain the arborescence property.

- Relax the property that edges are directed away from the root. Instead insist that in-degree of a vertex over all directionless trees equals k

- Existence of k edge-disjoint directionless trees implies global min-cut $\geq k$

- $\tilde{O}(mk)$ time construction by Gabow.
Edmonds’ Directionless Trees

- Swaps need to be constrained to maintain the arborescence property.
- Relax the property that edges are directed away from the root. Instead insist that in-degree of a vertex over all directionless trees equals k.
- Existence of k edge-disjoint directionless trees implies global min-cut $\geq k$.
- $\tilde{O}(mk)$ time construction by Gabow.
Edmonds’ Directionless Trees

- Swaps need to be constrained to maintain the arborescence property.
- Relax the property that edges are directed away from the root. Instead insist that in-degree of a vertex over all directionless trees equals k
- Existence of k edge-disjoint directionless trees implies global min-cut $\geq k$
- $\tilde{O}(mk)$ time construction by Gabow.
Global Min-Cut Characterizations from Edmonds’ Directionless Trees

- A subset S of vertices s.t. $r \notin S$, S is contiguous in all trees, and all unused edges directed into S having both endpoints in S, is a global min-cut.

- Gabow’s construction shows that such a set exists when no more edge-disjoint directionless trees can be constructed.
Global Min-Cut Characterizations from Edmonds’ Directionless Trees

- A subset S of vertices s.t. $r \notin S$, S is contiguous in all trees, and all unused edges directed into S having both endpoints in S, is a global min-cut.

- Gabow’s construction shows that such a set exists when no more edge-disjoint directionless trees can be constructed.
Edmonds’ Directionless Trees Construction Algorithm

- Suppose i trees have been constructed and the $i + 1$th tree is a forest.
- For each component in the $i + 1$th tree, run a closure algorithm to identify a subset S of vertices not containing the root, contiguous in all trees, and with all unused edges directed into S having both endpoints in S.
- If no such subset can be found then a sequence of swaps results in components in the $i + 1$th tree connecting up.
- $\tilde{O}(m)$ time for the $i + 1$th tree so $\tilde{O}(mk)$ overall; and m can be made $O(nk)$ via Nagamochi-Ibaraki.
Edmonds’ Directionless Trees Construction Algorithm

- Suppose i trees have been constructed and the $i + 1$th tree is a forest.
- For each component in the $i + 1$th tree, run a closure algorithm to identify a subset S of vertices not containing the root, contiguous in all trees, and with all unused edges directed into S having both endpoints in S.
- If no such subset can be found then a sequence of swaps results in components in the $i + 1$th tree connecting up.
- $\tilde{O}(m)$ time for the $i + 1$th tree so $\tilde{O}(mk)$ overall; and m can be made $O(nk)$ via Nagamochi-Ibaraki
Edmonds’ Directionless Trees Construction Algorithm

- Suppose i trees have been constructed and the $i+1$th tree is a forest.
- For each component in the $i+1$th tree, run a closure algorithm to identify a subset S of vertices not containing the root, contiguous in all trees, and with all unused edges directed into S having both endpoints in S.
- If no such subset can be found then a sequence of swaps results in components in the $i+1$th tree connecting up.
- $\tilde{O}(m)$ time for the $i+1$th tree so $\tilde{O}(mk)$ overall; and m can be made $O(nk)$ via Nagamochi-Ibaraki.

Ramesh Hariharan

Fast Connectivity Computation
Suppose \(i \) trees have been constructed and the \(i + 1 \)th tree is a forest.

For each component in the \(i + 1 \)th tree, run a closure algorithm to identify a subset \(S \) of vertices not containing the root, contiguous in all trees, and with all unused edges directed into \(S \) having both endpoints in \(S \).

If no such subset can be found then a sequence of swaps results in components in the \(i + 1 \)th tree connecting up.

\(\tilde{O}(m) \) time for the \(i + 1 \)th tree so \(\tilde{O}(mk) \) overall; and \(m \) can be made \(O(nk) \) via Nagamochi-Ibaraki.
Steiner Min-Cut Algorithm

- Split-off non-Steiner (black) vertices via arbitrary pairing of edges (the global min-cut of the remaining white Steiner vertices could drop in the process)
- Each edge is actually a path with internal blacks
- Run Gabow’s construction of Edmonds’ directionless trees on this new graph comprising only whites (ignore blacks)
Steiner Min-Cut Algorithm

- Split-off non-Steiner (black) vertices via arbitrary pairing of edges (the global min-cut of the remaining white Steiner vertices could drop in the process)
- Each edge is actually a path with internal blacks
- Run Gabow’s construction of Edmonds’ directionless trees on this new graph comprising only whites (ignore blacks)
Steiner Min-Cut Algorithm

- Split-off non-Steiner (black) vertices via arbitrary pairing of edges (the global min-cut of the remaining white Steiner vertices could drop in the process)
- Each edge is actually a path with internal blacks
- Run Gabow’s construction of Edmonds’ directionless trees on this new graph comprising only whites (ignore blacks)
Steiner Min-Cut Algorithm

- Suppose this culminates in finding a set S of vertices not containing the root, contiguous in all trees, and with all unused edges directed into S having both endpoints in S;

- S need not be a Steiner min-cut because it need not be contiguous when considering blacks
Steiner Min-Cut Algorithm

- Suppose this culminates in finding a set S of vertices not containing the root, contiguous in all trees, and with all unused edges directed into S having both endpoints in S;

- S need not be a Steiner min-cut because it need not be contiguous when considering blacks.
We introduce a mating operation (i.e., revision of pairing) whenever contiguity on blacks is violated.

This allows closure computation to continue.

And if black contiguity holds, then S is indeed a Steiner min-cut.

And we show how mates can be performed efficiently so the total time stays $\tilde{O}(nk^2)$, where k is the Steiner min-cut.

Several technicalities.
We introduce a mating operation (i.e., revision of pairing) whenever contiguity on blacks is violated. This allows closure computation to continue. If black contiguity holds, then S is indeed a Steiner min-cut. We show how mates can be performed efficiently so the total time stays $\tilde{O}(nk^2)$, where k is the Steiner min-cut. Several technicalities.
We introduce a mating operation (i.e., revision of pairing) whenever contiguity on blacks is violated. This allows closure computation to continue. And if black contiguity holds, then S is indeed a Steiner min-cut. And we show how mates can be performed efficiently so the total time stays $\tilde{O}(nk^2)$, where k is the Steiner min-cut.

Several technicalities.
We introduce a mating operation (i.e., revision of pairing) whenever contiguity on blacks is violated.

This allows closure computation to continue.

And if black contiguity holds, then S is indeed a Steiner min-cut.

And we show how mates can be performed efficiently so the total time stays $\tilde{O}(nk^2)$, where k is the Steiner min-cut.

Several technicalities.
Splitting-off Vertices in Undirected Graphs

- Goal: Split-off a specified subset of vertices so global min-cut of the remaining vertices is preserved.
- Algorithm as above, split-off with arbitrary pairings and then revise pairing via mating.
Splitting-off Vertices in Undirected Graphs

- Goal: Split-off a specified subset of vertices so global min-cut of the remaining vertices is preserved.
- Algorithm as above, split-off with arbitrary pairings and then revise pairing via mating.
Splitting-off Vertices in Undirected Graphs

- Complication: this is done on the directed version of the undirected graph; for true undirected splitting-off whenever two directed edges are paired, there reverse edges must be paired as well.

- Coupled Matings required and can be done in $\tilde{O}(nk^2)$ time.
Splitting-off Vertices in Undirected Graphs

- Complication: this is done on the directed version of the undirected graph; for true undirected splitting-off whenever two directed edges are paired, there reverse edges must be paired as well.

- Coupled Matings required and can be done in $\tilde{O}(nk^2)$ time.
Goal: Construct \(k \) arborescences where \(k \) is the global min-cut

Algo: Split-off a constant fraction of the vertices, recursively build arborescences for the rest, then put back the split-off vertices

Putting back requires that the vertices split-off are independent

By Turan’s theorem, there is a \(\frac{n}{k} \) sized independent set

So time taken is \(\tilde{O}(nk^3) \).
Faster Edmonds’ Arborescence Construction

- **Goal**: Construct k arborescences where k is the global min-cut.
- **Algo**: Split-off a constant fraction of the vertices, recursively build arborescences for the rest, then put back the split-off vertices.
 - Putting back requires that the vertices split-off are independent.
 - By Turan’s theorem, there is a n/k sized independent set.
 - So time taken is $\tilde{O}(nk^3)$.
Faster Edmonds’ Arborescence Construction

- **Goal:** Construct \(k \) arborescences where \(k \) is the global min-cut
- **Algo:** Split-off a constant fraction of the vertices, recursively build arborescences for the rest, then put back the split-off vertices
- **Putting back requires that the vertices split-off are independent**
 - By Turan’s theorem, there is a \(n/k \) sized independent set
 - So time taken is \(\tilde{O}(nk^3) \).
Faster Edmonds’ Arborescence Construction

- **Goal:** Construct \(k \) arborescences where \(k \) is the global min-cut
- **Algo:** Split-off a constant fraction of the vertices, recursively build arborescences for the rest, then put back the split-off vertices
- **Putting back** requires that the vertices split-off are independent
- **By Turan’s theorem,** there is a \(n/k \) sized independent set
- **So time taken is** \(\tilde{O}(nk^3) \).
Goal: Construct k arborescences where k is the global min-cut

Algo: Split-off a constant fraction of the vertices, recursively build arborescences for the rest, then put back the split-off vertices

Putting back requires that the vertices split-off are independent

By Turan’s theorem, there is a n/k sized independent set

So time taken is $\tilde{O}(nk^3)$.

Gomory-Hu Tree Construction

- Find global min-cut
- Create two Steiner min-cut sub-problems
- Consider computation tree
Gomory-Hu Tree Construction

- Find global min-cut
- Create two Steiner min-cut sub-problems
- Consider computation tree
Gomory-Hu Tree Construction

- Find global min-cut
- Create two Steiner min-cut sub-problems
- Consider computation tree
Gomory-Hu Tree Construction

- Consider a leftgoing path in the computation tree
- New small cuts are identified
- These are shrunk into single black vertices and split-off
- So split vertices as they are discovered; vertices to be split are not available in advance
Gomory-Hu Tree Construction

- Consider a leftgoing path in the computation tree
- New small cuts are identified
 - These are shrunk into single black vertices and split-off
 - So split vertices as they are discovered; vertices to be split are not available in advance
Gomory-Hu Tree Construction

- Consider a leftgoing path in the computation tree
- New small cuts are identified
- These are shrunk into single black vertices and split-off
- So split vertices as they are discovered; vertices to be split are not available in advance
Gomory-Hu Tree Construction

- Consider a leftgoing path in the computation tree
- New small cuts are identified
- These are shrunk into single black vertices and split-off
- So split vertices as they are discovered; vertices to be split are not available in advance
Gomory-Hu Tree Construction

- When a new small cut (black vertex) is discovered, edges incident on it must be paired up for splitting-off.
- Doing so may disconnect existing trees.
- Solution: Directionless Splitting.
- So one leftgoing path takes $O(mn)$ time.
Gomory-Hu Tree Construction

- When a new small cut (black vertex) is discovered, edges incident on it must be paired up for splitting-off.

- Doing so may disconnect existing trees.
 - Solution: Directionless Splitting
 - So one leftgoing path takes $O(mn)$ time.
Gomory-Hu Tree Construction

When a new small cut (black vertex) is discovered, edges incident on it must be paired up for splitting-off.

Doing so may disconnect existing trees.

Solution: Directionless Splitting

So one leftgoing path takes $O(mn)$ time.
Gomory-Hu Tree Construction

- When a new small cut (black vertex) is discovered, edges incident on it must be paired up for splitting-off.
- Doing so may disconnect existing trees.
- Solution: Directionless Splitting.
- So one leftgoing path takes $O(mn)$ time.
Gomory-Hu Tree Construction

- What is the time overall?
 - Partition computation tree into layers
 - The total number of edges in a layer is $O(m)$ (a bit tricky)
 - How many layers are there?
Gomory-Hu Tree Construction

- What is the time overall?
- Partition computation tree into layers
 - The total number of edges in a layer is $O(m)$ (a bit tricky)
 - How many layers are there?
Gomory-Hu Tree Construction

- What is the time overall?
- Partition computation tree into layers
- The total number of edges in a layer is $O(m)$ (a bit tricky)
- How many layers are there?
Gomory-Hu Tree Construction

- What is the time overall?
- Partition computation tree into layers
- The total number of edges in a layer is $O(m)$ (a bit tricky)
- How many layers are there?
Gomory-Hu Trees Construction

- Choose the root for tree construction randomly
- $O(\log n)$ layers
- The Gomory-Hu tree can be constructed in $\tilde{O}(nm)$ time
Gomory-Hu Trees Construction

- Choose the root for tree construction randomly
- $O(\log n)$ layers
- The Gomory-Hu tree can be constructed in $\tilde{O}(nm)$ time
Gomory-Hu Trees Construction

- Choose the root for tree construction randomly
- $O(\log n)$ layers
- The Gomory-Hu tree can be constructed in $\tilde{O}(nm)$ time
The Edge Orientation Problem

- Given a graph with global min-cut 2k
- Orient the edges so the resulting directed graph has global min-cut k
- Challenge: Odd degree vertices cannot be split-off time
- We show that a minimal graph has sufficiently many even degree vertices
- $\tilde{O}(npoly(k))$ time algorithm.
The Edge Orientation Problem

- Given a graph with global min-cut 2k
- Orient the edges so the resulting directed graph has global min-cut k
 - Challenge: Odd degree vertices cannot be split-off time
 - We show that a minimal graph has sufficiently many even degree vertices
 - $\tilde{O}(npoly(k))$ time algorithm.
The Edge Orientation Problem

- Given a graph with global min-cut 2k
- Orient the edges so the resulting directed graph has global min-cut k
- Challenge: Odd degree vertices cannot be split-off time
 - We show that a minimal graph has sufficiently many even degree vertices
 - $\tilde{O}(npoly(k))$ time algorithm.
The Edge Orientation Problem

- Given a graph with global min-cut 2k
- Orient the edges so the resulting directed graph has global min-cut k
- Challenge: Odd degree vertices cannot be split-off time
- We show that a minimal graph has sufficiently many even degree vertices
 - $\tilde{O}(n^{\text{poly}(k)})$ time algorithm.
The Edge Orientation Problem

- Given a graph with global min-cut $2k$
- Orient the edges so the resulting directed graph has global min-cut k
- Challenge: Odd degree vertices cannot be split-off time
- We show that a minimal graph has sufficiently many even degree vertices
- $\tilde{O}(npoly(k))$ time algorithm.
The Survivable Network Design Problem

- Given a weighted graph
- Each vertex v has a demand d; v must be connected to every other vertex with at least d edge-disjoint paths.
- Problem: Find the least weight solution
- The first sub-quadratic time implementation of the Williamson, Goemans, Mihail, Vazirani algorithm
The Survivable Network Design Problem

- Given a weighted graph
- Each vertex \(v \) has a demand \(d \); \(v \) must be connected to every other vertex with at least \(d \) edge-disjoint paths.
- Problem: Find the least weight solution
- The first sub-quadratic time implementation of the Williamson, Goemans, Mihail, Vazirani algorithm
The Survivable Network Design Problem

- Given a weighted graph
- Each vertex v has a demand d; v must be connected to every other vertex with at least d edge-disjoint paths.
- Problem: Find the least weight solution

The first sub-quadratic time implementation of the Williamson, Goemans, Mihail, Vazirani algorithm
The Survivable Network Design Problem

- Given a weighted graph
- Each vertex v has a demand d; v must be connected to every other vertex with at least d edge-disjoint paths.
- Problem: Find the least weight solution
- The first sub-quadratic time implementation of the Williamson, Goemans, Mihail, Vazirani algorithm
Open Problems

- Combine splitting-off and sampling (a la Karger) to obtain a $\tilde{O}(nk)$ time algorithm for exact/approximate Steiner min-cut

- Las-Vegas $\tilde{O}(nk)$ time algorithm for global Min-Cut
Open Problems

- Combine splitting-off and sampling (a la Karger) to obtain a $\tilde{O}(nk)$ time algorithm for exact/approximate Steiner min-cut.
- Las-Vegas $\tilde{O}(nk)$ time algorithm for global Min-Cut.
Collaborators and References

- Series of joint works with Richard Cole, Anand Balghat, Kavitha T, Debmalya Panigrahy
Collaborators and References

- Series of joint works with Richard Cole, Anand Balghat, Kavitha T, Debmalya Panigrahy
And Finally....

- THANK YOU